已知點F1(-4,0),F(xiàn)2(4,0),又P(x,y)是曲線上的點,則( )
A.|PF1|+|PF2|=10
B.|PF1|+|PF2|<10
C.|PF1|+|PF2|≤10
D.|PF1|+|PF2|≥10
【答案】分析:法一:根據(jù)方程,可以聯(lián)想橢圓,根據(jù)橢圓的定義可知,是以點F1(-4.0),F(xiàn)2(4,0)為焦點的橢圓,在橢圓上任意取點,可以證明點在曲線的內部或在曲線上,即橢圓上的點在封閉曲線的內部或曲線上,故可得結論.
法二:任取點P(x,y)在曲線上,可令,A∈[0,],易證得sinA+cosA≥1,即由此知點P(x,y)在上可其外部,再由橢圓的定義易選出正確選項
解答:解:根據(jù)方程,可以聯(lián)想橢圓
在橢圓上取點Q(5cosα,3sinα),即x=5cosα,y=3sinα
=2
∵0≤sin2α≤1,

即點Q在曲線的內部或在曲線上
所以橢圓上的點在封閉曲線的內部或曲線上
由題意,是以點F1(-4.0),F(xiàn)2(4,0)為焦點的橢圓
∴當P點恰好取在頂點上時,此時點P在橢圓上,故有|PF1|+|PF2|=10
點P不在曲線的頂點上時,必有點P在橢圓的外部,故|PF1|+|PF2|>10
綜上所述,|PF1|+|PF2|≥10
故選D.
法二:任取點P(x,y)在曲線上,可令,A∈[0,]
則有sinA+cosA≥1,即由此知點P(x,y)在上可其外部,故有|PF1|+|PF2|≥10
故選D
點評:本題以曲線為載體,考查類比思想,考查橢圓的定義,考查學生分析解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點F1(-4,0),F(xiàn)2(4,0),又P(x,y)是曲線
|x|
5
+
|y|
3
=1
上的點,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1(-4,0)和F2(4,0),曲線上的動點P到F1、F2的距離之差為6,則曲線方程為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1(-4,0),F(xiàn)2(4,0),又P(x,y)是曲線(
x
5
)4+(
y
3
)4=1
上的點,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省聊城市某重點高中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:選擇題

已知點F1(-4,0)和F2(4,0),曲線上的動點P到F1、F2的距離之差為6,則曲線方程為( )
A.-=1
B.-=1(y>0)
C.-=1或 -=1
D.-=1
E.-=1(x>0)

查看答案和解析>>

同步練習冊答案