設(shè)橢圓(m>1)上一點(diǎn)P到其左焦點(diǎn)的距離為3,到右焦點(diǎn)的距離為1,則P點(diǎn)到右準(zhǔn)線的距離為

[  ]
A.

6

B.

2

C.

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P(a,b)(a•b≠0)、R(a,2)為坐標(biāo)平面xoy上的點(diǎn),直線OR(O為坐標(biāo)原點(diǎn))與拋物線y2=
4ab
x
交于點(diǎn)Q(異于O).
(1)若對(duì)任意ab≠0,點(diǎn)Q在拋物線y=mx2+1(m≠0)上,試問(wèn)當(dāng)m為何值時(shí),點(diǎn)P在某一圓上,并求出該圓方程M;
(2)若點(diǎn)P(a,b)(ab≠0)在橢圓x2+4y2=1上,試問(wèn):點(diǎn)Q能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說(shuō)明理由;
(3)對(duì)(1)中點(diǎn)P所在圓方程M,設(shè)A、B是圓M上兩點(diǎn),且滿足|OA|•|OB|=1,試問(wèn):是否存在一個(gè)定圓S,使直線AB恒與圓S相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭一模)設(shè)橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,點(diǎn)A(a,0),B(0,-b),原點(diǎn)O到直線AB的距離為
2
3
3

(I)求橢圓M的方程;
(Ⅱ)設(shè)點(diǎn)C為(-a,0),點(diǎn)P在橢圓M上(與A、C均不重合),點(diǎn)E在直線PC上,若直線PA的方程為y=kx-4,且
CP
BE
=0
,試求直線BE的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•甘肅一模)設(shè)橢圓M:
x2
a2
+
y2
2
=1
(a>
2
)
的右焦點(diǎn)為F1,直線l:x=
a2
a2-2
與x軸交于點(diǎn)A,若
OF1
+2
AF1
=0
(其中O為坐標(biāo)原點(diǎn)).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個(gè)端點(diǎn)),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州模擬)(理科)設(shè)橢圓M:
x2
a2
+
y2
2
=1(a>
2
)
的右焦點(diǎn)為F1,直線l:x=
a2
a2-2
與x軸交于點(diǎn)A,若
OF1
+2
AF1
=0
(其中O為坐標(biāo)原點(diǎn))
(1)求橢圓M的方程;
(2)設(shè)點(diǎn)P是橢圓M上的任意一點(diǎn),線段EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個(gè)端點(diǎn)),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•濟(jì)寧一模)已知橢圓C1的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為e=
3
2
,P
為橢圓上一動(dòng)點(diǎn),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),且△PF1F2面積的最大值為
3

(1)求橢圓C1的方程;
(2)設(shè)橢圓短軸的上端點(diǎn)為A、M為動(dòng)點(diǎn),且
1
5
|
F2A
|2,
1
2
F2M
AM
AF1
OM
成等差數(shù)列,求動(dòng)點(diǎn)M的軌跡C2的方程;
(3)過(guò)點(diǎn)M作C2的切線l交于C1與Q、R兩點(diǎn),求證:
OQ
OR
=0

查看答案和解析>>

同步練習(xí)冊(cè)答案