5.已知△ABC為等邊三角形,則<$\overrightarrow{AB}$,$\overrightarrow{BC}$>=( 。
A.45°B.60°C.90°D.120°

分析 畫出等邊三角形,由<$\overrightarrow{AB}$,$\overrightarrow{BC}$>與∠ABC互補得答案.

解答 解:如圖,

∵△ABC為等邊三角形,
∴∠ABC=60°,則<$\overrightarrow{AB}$,$\overrightarrow{BC}$>=180°-60°=120°.
故選:D.

點評 本題考查平面向量的數(shù)量積運算,考查了向量的夾角,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項和為Sn,且(Sn-1)2=anSn
(Ⅰ)求S1、S2、S3;
(Ⅱ)猜想Sn的表達(dá)式,并用數(shù)字歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某視頻加工廠以前的衛(wèi)生監(jiān)測資料表明,按照國家標(biāo)準(zhǔn)衡量,該工廠一個月內(nèi)每天的各項衛(wèi)生指標(biāo)達(dá)到優(yōu)良標(biāo)準(zhǔn)的概率是0.95,連續(xù)兩個月達(dá)到優(yōu)良標(biāo)準(zhǔn)的概率是0.76,已知今年某個月各項指標(biāo)均達(dá)到優(yōu)良,則隨后一個月也達(dá)到優(yōu)良的概率是( 。
A.0.8B.0.95C.0.76D.0.722

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.以0(±$\sqrt{2}$,0)為焦點、坐標(biāo)軸為對稱軸的橢圓M與圓N外切,圓N的方程為(x-3)2+y2=1.
(1)求橢圓M的方程;
(2)若過原點的直線交圓N于A,B兩點,且AB的中點為C,求點C的軌跡方程;
(3)若過圓心N且斜率為1的直線交圓N于Q,R兩點,試探究在橢圓M上是否存在點P,使得以PQ為直徑的圓過點N?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)已知a,b,c均為正實數(shù),且a+b+c=1,求證:$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≥9;
(2)已知a>b>c,且a+b+c=0,求證:$\sqrt{^{2}-ac}$<$\sqrt{3}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知四邊形ABCD,AB⊥AC,∠ACB=30°,∠ACD=15°,∠DBC=30°,且AB=1,則CD的長為$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知:數(shù)列{an},{bn}中,a1=0,b1=1,且當(dāng)n∈N*時,an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列;
(1)求數(shù)列{an},{bn}的通項公式;
(2)求最小自然數(shù)k,使得當(dāng)n≥k時,對任意實數(shù)λ∈[0,1],不等式(2λ-3)bn≥(2λ-4)an+λ-3恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{4}$+y2=1,A,B,C,D為橢圓上四個動點,且AC,BD相交于原點O,設(shè)A(x1,y1),B(x2,y2)滿足$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$.
(1)求證:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題p:2≤2,命題q:?x0∈R,使得x02+2x0+2=0,則下列命題是真命題的是( 。
A.¬pB.¬p∨qC.p∧qD.p∨q

查看答案和解析>>

同步練習(xí)冊答案