【題目】已知函數(shù),.
(1)若直線與曲線和分別交于兩點直線,且曲線在處的切線與在處的切線相互平行,求正數(shù)的最大值;
(2)若有三個不同的零點,求的取值范圍.
【答案】(1);(2)
【解析】分析:(1)問題可轉化為在有解,也就是在有解,考慮的圖像與直線有公共點即可得到參數(shù)的最大值.
(2)因為有三個不同的零點,所以函數(shù)必有兩個不同的極值點,也就是導函數(shù)必有兩個不同的零點,從而.我們還需要論證當,確有三個不同的零點,這可以通過零點存在定理和單調性來判斷.
詳解:(1)依題意,函數(shù)的定義域為,
,.
因為曲線在處的切線與在處的切線相互平行,
所以在有解,即方程在有解.
方程在有解轉化為函數(shù)與函數(shù)的圖象在上有交點.
令過原點且與函數(shù)的圖象相切的直線的斜率為,只須.
令切點為,則,又,所以,解得,
于是,所以,的最大值為
(2)由題意,則,
當時,∵,
∴在上為增函數(shù),不符合題意.
當時,,令,則
.令的兩根分別為且,
則∵,,∴,
當時,,∴,∴在上為增函數(shù);
當時,,∴,∴在上為減函數(shù);
當時,,∴,∴在上為增函數(shù);
∵,∴在上只有一個零點1,且,.
∴
.
∵,又當時,,∴
∴在上必有一個零點.
∴
.
∵,又當時,,∴.
∴在上必有一個零點.
綜上所述,故的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知:函數(shù),當x∈(-3,2)時,>0,當x∈(-,-3)(2,+)時,<0
(I)求a,b的值;
(II)若不等式的解集為R,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解用戶對其產品的滿意度,從A、B兩地區(qū)分別隨機調查了20個用戶,得到用戶對產品的滿意度評分如下:
A地區(qū): | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地區(qū): | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結論即可):
(Ⅱ)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
記事件C:“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級”,假設兩地區(qū)用戶的評價結果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應事件發(fā)生的概率,求C的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.
(1)求橢圓的方程;
(2)不過點的動直線與橢圓相交于兩點,且.求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】耐鹽堿水稻俗稱“海水稻”,是一種可以長在灘涂和鹽堿地的水稻。還水稻的灌溉是將海水稀釋后進行灌溉。某實驗基礎為了研究海水濃度()對畝產量(噸)的影響,通過在試驗田的種植實驗,測得了某種還水稻的畝產量與海水濃度的數(shù)據(jù)如下表:
海水濃度 | |||||
畝產量(噸) |
繪制散點圖發(fā)現(xiàn),可用線性回歸模型擬合畝產量與海水濃度之間的相關關系,用最小二乘法計算得與之間的線性回歸方程為.
(1)求出的值,并估算當澆灌海水濃度為8%時該品種的畝產量。
(2)①完成下列殘差表:
海水濃度 | |||||
畝產量(噸) | |||||
殘差 |
②統(tǒng)計學中常用相關指數(shù)來刻畫回歸效果,越大,模型擬合效果越好,如假設,就說明預報變量的差異有是由解釋變量引起的.請計算相關指數(shù)(精確到0.01),并指出畝產量的變化多大程度上是由澆灌海水濃度引起的.
(附:殘差公式,相關指數(shù),參考數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象關于原點對稱,其中為常數(shù).
(1)求的值;
(2)當時, 恒成立,求實數(shù)的取值范圍;
(3)若關于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校對生源基地學校一年級的數(shù)學成績進行摸底調查,已知其中兩個摸底學校分別有人、人,現(xiàn)采用分層抽樣的方法從兩個學校一共抽取了名學生的數(shù)學成績,并作出了頻數(shù)分別統(tǒng)計表如下:(一年級人數(shù)為人的學校記為學校一,一年級人數(shù)為1000人的學校記為學校二)
學校一
分組 | ||||
頻道 | ||||
分組 | ||||
頻數(shù) |
學校二
分組 | ||||
頻道 | ||||
分組 | ||||
頻數(shù) |
(1)計算,的值.
(2)若規(guī)定考試成績在內為優(yōu)秀,請分別估計兩個學校數(shù)學成績的優(yōu)秀率;
(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認為兩個學校的數(shù)學成績有差異.
學校一 | 學校二 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
附:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com