【題目】設(shè)函數(shù)f(x)=﹣ x3+x2+(m2﹣1)x,(x∈R),其中m>0.
(1)當(dāng)m=1時(shí),曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
【答案】
(1)解:當(dāng)m=1時(shí),f(x)=﹣ x3+x2,f′(x)=﹣x2+2x,故f′(1)=1.
所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率為1
(2)解:f′(x)=﹣x2+2x+m2﹣1.
令f′(x)=0,解得x=1﹣m,或x=1+m.
因?yàn)閙>0,所以1+m>1﹣m.
當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:
x | (﹣∞,1﹣m) | 1﹣m | (1﹣m,1+m) | 1+m | (1+m,+∞) |
f′(x) | ﹣ | 0 | + | 0 | ﹣ |
f(x) | 遞減 | 極小值 | 遞增 | 極大值 | 遞減 |
所以f(x)在(﹣∞,1﹣m),(1+m,+∞)內(nèi)是減函數(shù),在(1﹣m,1+m)內(nèi)是增函數(shù).
函數(shù)的極小值為:f(1﹣m)=﹣ m3+m2﹣ ;
函數(shù)的極大值為:f(1+m)=
【解析】(1)由已知中函數(shù)f(x)=﹣ x3+x2+(m2﹣1)x,根據(jù)m=1,我們易求出f(1)及f′(1)的值,代入點(diǎn)斜式方程即可得到答案.(2)由已知我們易求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)值為0,我們則求出導(dǎo)函數(shù)的零點(diǎn),根據(jù)m>0,我們可將函數(shù)的定義域分成若干個(gè)區(qū)間,分別在每個(gè)區(qū)間上討論導(dǎo)函數(shù)的符號(hào),即可得到函數(shù)的單調(diào)區(qū)間.
【考點(diǎn)精析】通過靈活運(yùn)用基本求導(dǎo)法則和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo);一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x2+ax+a)e﹣x , (a為常數(shù),e為自然對(duì)數(shù)的底).
(1)當(dāng)a=0時(shí),求f′(2);
(2)若f(x)在x=0時(shí)取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(a),將a換元為x,試判斷曲線y=g(x)是否能與直線3x﹣2y+m=0(m為確定的常數(shù))相切,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin2x+2 cos2x﹣ ,函數(shù)g(x)=mcos(2x﹣ )﹣2m+3(m>0),若存在x1 , x2∈[0, ],使得f(x1)=g(x2)成立,則實(shí)數(shù)m的取值范圍是( )
A.(0,1]
B.[1,2]
C.[ ,2]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓左右兩個(gè)焦點(diǎn)構(gòu)成的三角形周長為.
(1)求橢圓的方程;
(2)如圖,設(shè)點(diǎn)為橢圓上任意一點(diǎn),直線和橢圓交于兩點(diǎn),且直線與軸分別交于兩點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次數(shù)學(xué)測驗(yàn)中,有6位同學(xué)的平均成績?yōu)?17分,用表示編號(hào)為的同學(xué)所得成 績,6位同學(xué)成績?nèi)绫恚?/span>
(1)求及這6位同學(xué)成績的方差;
(2)從這6位同學(xué)中隨機(jī)選出2位同學(xué),則恰有1位同學(xué)成績在區(qū)間中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ) 的最小正周期為π,
(1)求當(dāng)f(x)為偶函數(shù)時(shí)φ的值;
(2)若f(x)的圖象過點(diǎn)( , ),求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點(diǎn).
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com