【題目】某公司2016年前三個(gè)月的利潤(rùn)(單位:百萬(wàn)元)如下:

月份

利潤(rùn)

(1)求利潤(rùn)關(guān)于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預(yù)測(cè)月和月的利潤(rùn);

(3)試用(1)中求得的回歸方程預(yù)測(cè)該公司2016年從幾月份開(kāi)始利潤(rùn)超過(guò)萬(wàn)?

相關(guān)公式: ,

【答案】(1);(2)月的利潤(rùn)為萬(wàn),月的利潤(rùn)為萬(wàn);(3)月份.

【解析】

試題分析:(1)根據(jù)平均數(shù)和最小二乘法的公式,求解,求出,即可求解回歸方程;(2)把分別代入,回歸直線方程,即可求解;(3)令,即可求解的值,得出結(jié)果.

試題解析:(1),

利潤(rùn)關(guān)于月份的線性回歸方程.

(2)當(dāng)時(shí),,故可預(yù)測(cè)月的利潤(rùn)為萬(wàn).

當(dāng)時(shí),, 故可預(yù)測(cè)月的利潤(rùn)為萬(wàn).

(3)由,故公司2016年從月份開(kāi)始利潤(rùn)超過(guò)萬(wàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

137 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為

A.0.40 B.0.30

C.0.35 D.0.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為平行于軸的兩條直線分別交,兩點(diǎn)的準(zhǔn)線于,兩點(diǎn)

(1)若在線段,的中點(diǎn)證明

(2)若的面積是△的面積的兩倍中點(diǎn)的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)已知函數(shù))的最小正周

期為,

)求的值;

)將函數(shù)的圖像上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到函數(shù)

的圖像,求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)點(diǎn),圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長(zhǎng)為.點(diǎn)為圓上異于的任意一點(diǎn),直線軸交于點(diǎn),直線軸交于點(diǎn).

(1)求圓的方程;

(2)求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)一帶一路戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住一帶一路帶來(lái)的機(jī)遇, 決定開(kāi)發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬(wàn)元, 每生產(chǎn)臺(tái),需另投入成本(萬(wàn)元), 當(dāng)年產(chǎn)量不足臺(tái)時(shí), (萬(wàn)元); 當(dāng)年產(chǎn)量不小于臺(tái)時(shí) (萬(wàn)元), 若每臺(tái)設(shè)備售價(jià)為萬(wàn)元, 通過(guò)市場(chǎng)分析,該企業(yè)生產(chǎn)的電子設(shè)能全部.

(1)求年利潤(rùn) (萬(wàn)元)關(guān)年產(chǎn)(臺(tái))的函數(shù)關(guān)系式;

(2)年產(chǎn)為多少臺(tái)時(shí) ,該企業(yè)在這一電子設(shè)的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上離心率,且橢圓經(jīng)過(guò)點(diǎn),過(guò)橢圓的左焦點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓,兩點(diǎn)

(1)求橢圓的方程;

(2)設(shè)線段的垂直平分線與軸交于點(diǎn),求△的面積的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:直線與圓有兩個(gè)交點(diǎn);命題: .

1)若為真命題,求實(shí)數(shù)的取值范圍;

2)若為真命題, 為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)男子籃球職業(yè)聯(lián)賽總決賽采用七場(chǎng)四勝制(即先勝四場(chǎng)者獲勝),進(jìn)入總決賽的甲乙兩隊(duì)中,若每一場(chǎng)比賽甲隊(duì)獲勝的概率為,乙隊(duì)獲勝的概率為,假設(shè)每場(chǎng)比賽的結(jié)果互相獨(dú)立現(xiàn)已賽完兩場(chǎng),乙隊(duì)以2:0暫時(shí)領(lǐng)先.

(1)求甲隊(duì)獲得這次比賽勝利的概率;

(2)設(shè)比賽結(jié)束時(shí)兩隊(duì)比賽的場(chǎng)數(shù)為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案