(12分)已知圓C1與圓C2相交于A、B兩點。
⑴ 求公共弦AB的長;
⑵ 求圓心在直線上,且過A、B兩點的圓的方程;
⑶ 求經(jīng)過A、B兩點且面積最小的圓的方程。

試題分析:⑴由兩圓方程相減即得
此為公共弦AB所在的直線方程
圓心半徑
C1到直線AB的距離為
故公共弦長 
⑵ 圓心,過C1,C2的直線方程為,即
得所求圓的圓心為
它到AB的距離為
∴所求圓的半徑為
∴所求圓的方程為 
⑶ 過A、B且面積最小的圓就是以AB為直徑的圓
,得圓心半徑
∴所求圓的方程為 
點評:直線與圓相交時圓的半徑,圓心到直線的距離,弦長的一半構(gòu)成直角三角形,第一問主要利用此三角形求解;第二問還可用待定系數(shù)法求方程
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知⊙O的弦AB交半徑OC于點D,若AD=4,BD=3,OC=4,則CD的長為______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,是一個與x軸的正半軸、y軸的正半軸分別相切于點C、D的定圓所圍成區(qū)域(含邊界),A、B、C、D是該圓的四等分點,若點P(x,y)、,則稱P優(yōu)于,如果中的點Q滿足:不存在中的其它點優(yōu)于Q,那么所有這樣的點Q組成的集合是劣弧(   )

A. A    B.B     C. C    D.D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個交點,經(jīng)過這三個交點的圓記為C.求:
(1)求實數(shù)的取值范圍;
(2)求圓C 的方程;
(3)問圓C 是否經(jīng)過某定點(其坐標(biāo)與無關(guān))?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓C1: 與圓C2:的位置關(guān)系是(   )
A.外離B.外切C.內(nèi)切D.相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題11分)已知圓,過原點的直線與圓相交于兩點
(1) 若弦的長為,求直線的方程;
(2)求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程 表示一個圓,則有(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的投影,M為PD上一點,且|MD|=|PD|.

(Ⅰ)當(dāng)P在圓上運動時,求點M的軌跡C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被曲線C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

圓x2+y2-2x-2y+1=0上的動點Q到直線3x+4y+8=0距離的最小值為      

查看答案和解析>>

同步練習(xí)冊答案