【題目】(1)求證:正三角形各頂點(diǎn)到其外接圓上任一切線的距離之和為定值;
(2)猜想空間命題“正四面體各頂點(diǎn)到其外接球的任一切面的距離之和為定值”是否成立?證明你的結(jié)論.注:與球只有一個(gè)公共點(diǎn)的平面叫做球的切面,這個(gè)公共點(diǎn)叫做切點(diǎn),切點(diǎn)與球心的連線垂直于切面.
【答案】(1)見解析;(2)見解析
【解析】
(1)如圖,設(shè)正外接圓的圓心為,半徑為,任意一條切線為,聯(lián)結(jié)交于點(diǎn).則為的中點(diǎn),且.
一般地,用記號(hào)表示點(diǎn)到切線的距離.則,,
得(定值).
(2)結(jié)論是肯定的.證明如下:
如圖,作正四面體的外接正方體,在正四面體中,、分別是線段、的中點(diǎn),是的中心,是正四面體的外接球的球心.則、、三點(diǎn)共線,且為線段的中點(diǎn)(是正方體的中心,、分別是正方體上、下兩面的中心,是正方體主對(duì)角線的).
用記號(hào)表示點(diǎn)到切面的距離,用表示外接球的半徑長(zhǎng).則
,,,
得 (定值).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)數(shù),函數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的取值;
(2)設(shè),若,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在時(shí)取得極值,求實(shí)數(shù)的值;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市正在創(chuàng)建全國(guó)文明城市,某高中為了解學(xué)生的創(chuàng)文知曉率,按分層抽樣的方法從“表演社”、“演講社”、“圍棋社”三個(gè)活動(dòng)小組中隨機(jī)抽取了6人進(jìn)行問卷調(diào)查,各活動(dòng)小組人數(shù)統(tǒng)計(jì)如下圖:
(1)從參加問卷調(diào)查的6名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來自同一小組的概率;
(2)從參加問卷調(diào)查的6名學(xué)生中隨機(jī)抽取3名,用表示抽得“表演社”小組的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式對(duì)任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓內(nèi)接等腰梯形中,已知,對(duì)角線、交于點(diǎn),且圖中各條線段長(zhǎng)均為正整數(shù),,圓的半徑.
(1)求證:圖中存在一個(gè)三角形,其三邊長(zhǎng)均為質(zhì)數(shù)且組成等差數(shù)列;
(2)若給圖中的線(包括圓、梯形、梯形的對(duì)角線)作點(diǎn)染色,使、、染上紅色,其他點(diǎn)染上紅藍(lán)色之一,求證:圖中存在三個(gè)同色點(diǎn),兩兩距離相等且長(zhǎng)度為質(zhì)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,下列結(jié)論中錯(cuò)誤的是
A. , f()=0
B. 函數(shù)y=f(x)的圖像是中心對(duì)稱圖形
C. 若是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,)單調(diào)遞減
D. 若是f(x)的極值點(diǎn),則()=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃平縣且蘭高中全體師生努力下,有效進(jìn)行了“一對(duì)一輔導(dǎo)戰(zhàn)略”成績(jī)提高了一倍,下列是“優(yōu)秀學(xué)生”,“中等學(xué)生”,“差生”進(jìn)行“一對(duì)一”前后所占比例
戰(zhàn)略前 | 戰(zhàn)略后 | |||||
優(yōu)秀學(xué)生 | 中等學(xué)生 | 差生 | 優(yōu)秀學(xué)生 | 中等學(xué)生 | 差生 | |
20% | 50% | 30% | 25% | 45% | 30% |
則下列結(jié)論正確的是( )
A.實(shí)行“一對(duì)一”輔導(dǎo)戰(zhàn)略,差生成績(jī)并沒有提高.
B.實(shí)行“一對(duì)一”輔導(dǎo)戰(zhàn)略,中等生成績(jī)反而下降了.
C.實(shí)行“一對(duì)一”輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生成績(jī)提高了.
D.實(shí)行“一對(duì)一”輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生與中等生的成績(jī)沒有發(fā)生改變.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,直線l過點(diǎn).
(1)若點(diǎn)F到直線l的距離為,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點(diǎn),且AB不與x軸垂直,若線段AB的垂直平分線恰過點(diǎn)M,求證:線段AB中點(diǎn)的橫坐標(biāo)為定值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com