【題目】已知,滿足約束條件,若目標(biāo)函數(shù)的最小值為-5,則的最大值為( )
A. 2B. 3
C. 4D. 5
【答案】D
【解析】
由目標(biāo)函數(shù)z=3x+y的最小值為`-5,可以畫出滿足條件的可行域,結(jié)合目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),得到參數(shù)的取值,然后求出目標(biāo)函數(shù)的最大值即可.
畫出x,y滿足的可行域如下圖:
z=3x+y變形為y=-3x+z,其中z表示直線的截距,
可得在直線與直線=0的交點(diǎn)A處,使目標(biāo)函數(shù)z=3x+y取得最小值-5,當(dāng)過點(diǎn)B時(shí),目標(biāo)函數(shù)z=3x+y取得最大值,
故由 ,
解得 x=-2,y=1,
代入=0得a=1,
由B(3,-4)
當(dāng)過點(diǎn)B(3,-4)時(shí),目標(biāo)函數(shù)z=3x+y取得最大值,最大值為5.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的周期為,圖象的一個(gè)對稱中心為.將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個(gè)單位長度后得到函數(shù)的圖象.
(1)求函數(shù)與的解析式.
(2)定義:當(dāng)函數(shù)取得最值時(shí),函數(shù)圖象上對應(yīng)的點(diǎn)稱為函數(shù)的最值點(diǎn),如果函數(shù)的圖象上至少有一個(gè)最大值點(diǎn)和一個(gè)最小值點(diǎn)在圓的內(nèi)部或圓周上,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,,為的中點(diǎn).
(Ⅰ)求證:PA//平面BEF;
(Ⅱ)若PC與AB所成角為,求的長;
(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn)離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過橢圓左焦點(diǎn)的直線(不經(jīng)過點(diǎn)且不與軸重合)與橢圓交于兩點(diǎn),與直線:交于點(diǎn),記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(a,);
(1)若,求證:函數(shù)的圖像必過定點(diǎn);
(2)若,證明:在區(qū)間上的最大值;
(3)存在實(shí)數(shù)a,使得當(dāng)時(shí),恒成立,求實(shí)數(shù)b的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“楊輝三角”是我國數(shù)學(xué)史上的一個(gè)偉大成就,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.如圖所示,第行的數(shù)字之和為______;去除所有為1的項(xiàng),依此構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,則此數(shù)列的前46項(xiàng)和為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最大值為3.
(1)求橢圓的方程;
(2)若過橢圓的右焦點(diǎn)作傾斜角不為零的直線與橢圓交于兩點(diǎn),設(shè)線段的垂直平分線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解社區(qū)群眾體育活動的開展情況,擬采用分層抽樣的方法從A,B,C三個(gè)行政區(qū)抽出6個(gè)社區(qū)進(jìn)行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個(gè)社區(qū).
(1)求從A,B,C三個(gè)行政區(qū)中分別抽取的社區(qū)個(gè)數(shù);
(2)若從抽得的6個(gè)社區(qū)中隨機(jī)的抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對比,求抽取的2個(gè)社區(qū)中至少有一個(gè)來自A行政區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級階梯式水價(jià)計(jì)量方法,具體如下;第一階梯,每戶居民每月用水量不超過12噸,價(jià)格為4元/噸;第二階梯,每戶居民用水量超過12噸,超過部分的價(jià)格為8元/噸,為了了解全是居民月用水量的分布情況,通過抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照(全市居民月用水量均不超過16噸)分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com