【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)當(dāng)AD=1時(shí),求直線FB與平面DFC所成角的正弦值.
【答案】(Ⅰ)證明見解析(Ⅱ).
【解析】
(Ⅰ)證明BF⊥平面ADF即可.
(Ⅱ) 以F為原點(diǎn)建立空間直角坐標(biāo)系,再根據(jù)空間向量的方法求解直線FB與平面DFC所成角的正弦值即可.
(Ⅰ)證明:∵AB為圓O的直徑,點(diǎn)E、F在圓O上,∴AF⊥BF,
∵矩形ABCD所在的平面與圓O所在的平面互相垂直,
∴AD⊥AB,∴AD⊥平面ABEF,∴AD⊥BF,
∵AD∩AF=A,∴BF⊥平面ADF,
∵BF平面CBF,∴平面DAF⊥平面CBF.
(Ⅱ)解:連結(jié)FO,∵AB=2,EF=1,AB∥EF,
∴當(dāng)AD=1時(shí),四邊形EFOB是菱形,
以F為原點(diǎn),FB為x軸,FA為y軸,過F作平面ABEF的垂線為z軸,建立空間直角坐標(biāo)系,
F(0,0,0),B(,0,0),C(,0,1),D(0,1,1),
(,0,0),(,0,1),(0,1,1),
設(shè)平面DFC的法向量(x,y,z),
則,取x=1,得(1,,),
設(shè)直線FB與平面DFC所成角為θ,
則sinθ.
∴直線FB與平面DFC所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡大點(diǎn)頻率分布及支持“生育二胎”人數(shù)如下表:
年齡 | ||||||
頻率 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是
A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時(shí)間至少80分鐘
B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高
C. 這40名工人完成任務(wù)所需時(shí)間的中位數(shù)為80
D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時(shí)間都是80分鐘.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漢字聽寫大會(huì)不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬名市民進(jìn)行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個(gè)數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;
試估計(jì)該市市民正確書寫漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);
已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,過點(diǎn)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點(diǎn)M,N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABD﹣A1B1C1D1中四邊形A1B1C1D1,ADD1A1.ABB1A1均為正方形.點(diǎn)M是BD的中點(diǎn).點(diǎn)H在線段C1M上,且A1H與平面ABD所成角的正弦值為.
(Ⅰ)證明:B1D1∥平面BC1D:
(Ⅱ)求二面角A﹣A1H﹣B的的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P是橢圓上一點(diǎn),M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三角形 的邊長為3, 分別是邊上的點(diǎn),滿足 (如圖1).將折起到的位置,使平面平面,連接(如圖2).
(1)求證:平面 ;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,直線恰好經(jīng)過橢圓C:的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓C方程;
(2)過橢圓C左焦點(diǎn)F的直線l交橢圓C于兩點(diǎn),橢圓上存在一點(diǎn)P,使得四邊形為平行四邊形,求直線l的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com