已知函數(shù).
(1)若在上恒成立,求m取值范圍;
(2)證明:().
(注:)
(1);(2)證明過(guò)程詳見(jiàn)解析.
解析試題分析:本題考查導(dǎo)數(shù)的應(yīng)用、不等式、數(shù)列等基礎(chǔ)知識(shí),考查思維能力、運(yùn)算能力、分析問(wèn)題與解決問(wèn)題的能力和創(chuàng)新意識(shí),考查函數(shù)、轉(zhuǎn)化與化歸、分類討論、特殊與一般等數(shù)學(xué)思想方法.第一問(wèn),將在上恒成立,轉(zhuǎn)化為恒成立,設(shè)出新函數(shù),求導(dǎo)數(shù),判斷導(dǎo)數(shù)的正負(fù),確定函數(shù)的單調(diào)性,但是導(dǎo)數(shù)中含參數(shù),所以需討論方程的根與1的大;第二問(wèn),借助第一問(wèn)的結(jié)論,取,即可得到所證不等式左邊的形式,令,累加得,得出左邊的式子,右邊利用題中題供的公式化簡(jiǎn).
試題解析:(1)令在上恒成立
當(dāng)時(shí),即時(shí)
在恒成立.在上遞減.
原式成立.
當(dāng)即時(shí)
不能恒成立.
綜上: 6分
(2) 由 (1) 取有
令
∴化簡(jiǎn)證得原不等式成立. 12分
考點(diǎn):1.恒成立問(wèn)題;2.利用導(dǎo)數(shù)求函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若對(duì)任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)的導(dǎo)函數(shù)為f ′(x),且對(duì)任意x>0,都有f ′(x)>.
(Ⅰ)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;
(Ⅱ)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)請(qǐng)將(Ⅱ)中的結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/8/14nxn2.png" style="vertical-align:middle;" />.求關(guān)于的不等式的解集;
(Ⅱ)當(dāng)時(shí),為常數(shù),且,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中.
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的極大值和極小值,若函數(shù)有三個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),在上的減函數(shù).
(Ⅰ)求曲線在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若在上恒成立,求的取值范圍;
(Ⅲ)關(guān)于的方程()有兩個(gè)根(無(wú)理數(shù)e=2.71828),求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com