【題目】已知無(wú)窮數(shù)列的各項(xiàng)都是正數(shù),其前項(xiàng)和為,且滿足:,,其中,常數(shù)

1)求證:是一個(gè)定值;

2)若數(shù)列是一個(gè)周期數(shù)列(存在正整數(shù),使得對(duì)任意,都有成立,則稱為周期數(shù)列,為它的一個(gè)周期),求該數(shù)列的最小周期;

3)若數(shù)列是各項(xiàng)均為有理數(shù)的等差數(shù)列,),問(wèn):數(shù)列中的所有項(xiàng)是否都是數(shù)列中的項(xiàng)?若是,請(qǐng)說(shuō)明理由;若不是,請(qǐng)舉出反例.

【答案】(1)見(jiàn)解析 (2) 最小周期為(3)不是,見(jiàn)解析

【解析】

1)由rSnanan+11,利用迭代法得:ran+1an+1an+2an),由此能夠證明an+2an為定值.

2)當(dāng)n1時(shí),raaa21,故a2,根據(jù)數(shù)列是隔項(xiàng)成等差,寫(xiě)出數(shù)列的前幾項(xiàng),再由r0r0兩種情況進(jìn)行討論,能夠求出該數(shù)列的周期.

3)因?yàn)閿?shù)列{an}是一個(gè)有理等差數(shù)列,所以a+ar2r),化簡(jiǎn)2a2ar20,解得a是有理數(shù),由此入手進(jìn)行合理猜想,能夠求出Sn

1)由 ①,

②-①,得,

因?yàn)?/span>,所以(定值).

2)當(dāng)時(shí),,故,

根據(jù)(1)知,數(shù)列的奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別成等差數(shù)列,公差都是,所以,

,

當(dāng)時(shí),的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)都是遞增的,不可能是周期數(shù)列,

所以,所以,所以,數(shù)列

3)因?yàn)閿?shù)列是有理項(xiàng)等差數(shù)列,由,,,得

,整理得,

(負(fù)根舍去),

因?yàn)?/span>是有理數(shù),所以是一個(gè)完全平方數(shù),設(shè)),

當(dāng)時(shí),(舍去).

當(dāng)時(shí),由,得

由于,,所以只有,符合要求,

此時(shí),數(shù)列的公差,所以).

對(duì)任意,若是數(shù)列中的項(xiàng),令,即

,時(shí),,時(shí),,

不是數(shù)列中的項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線Cx22pyp0),直線lCA,B兩點(diǎn),且AB兩點(diǎn)與原點(diǎn)不重合,點(diǎn)M12)為線段AB的中點(diǎn).

1)若直線l的斜率為1,求拋物線C的方程;

2)分別過(guò)A,B兩點(diǎn)作拋物線C的切線,若兩條切線交于點(diǎn)S,證明點(diǎn)S在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為.

1)求直線l的普通方程及曲線C的直角坐標(biāo)方程;

2)設(shè)點(diǎn),直線l與曲線C相交于A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),共享單車已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務(wù)民眾,某共享單車公司在其官方中設(shè)置了用戶評(píng)價(jià)反饋系統(tǒng),以了解用戶對(duì)車輛狀況和優(yōu)惠活動(dòng)的評(píng)價(jià),現(xiàn)從評(píng)價(jià)系統(tǒng)中選出條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),車輛狀況和優(yōu)惠活動(dòng)評(píng)價(jià)的列聯(lián)表如下:

對(duì)優(yōu)惠活動(dòng)好評(píng)

對(duì)優(yōu)惠活動(dòng)不滿意

合計(jì)

對(duì)車輛狀況好評(píng)

對(duì)車輛狀況不滿意

合計(jì)

(1)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與車輛狀況好評(píng)之間有關(guān)系?

(2)為了回饋用戶,公司通過(guò)向用戶隨機(jī)派送每張的面額為元,元,元的三種騎行券,用戶每次使用掃碼用車后,都可獲得一張騎行券,用戶騎行一-次獲得元券,獲得元券的概率分別是,且各次獲取騎行券的結(jié)果相互獨(dú)立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當(dāng)天獲得的騎行券面額之和為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

:下邊的臨界值表僅供參考:

(參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

1)存在實(shí)數(shù)使;

2)直線是函數(shù)圖象的一條對(duì)稱軸;

3)的值域是;

4)若都是第一象限角,且,則

其中正確命題的序號(hào)為(

A.1)(2B.2)(3C.3)(4D.1)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),討論的單調(diào)性;

2)設(shè)函數(shù),若存在不相等的實(shí)數(shù),,使得,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中,已知對(duì)任意都成立,數(shù)列的前n項(xiàng)和為

1)若是等差數(shù)列,求k的值;

2)若,,求;

3)是否存在實(shí)數(shù)k,使數(shù)列是公比不為1的等比數(shù)列,且任意相鄰三項(xiàng),按某順序排列后成等差數(shù)列?若存在,求出所有k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,正方形所在平面垂直于平面,四邊形為平行四邊形,上一點(diǎn),且平面,.

1)求證:平面平面;

2)當(dāng)三棱錐體積最大時(shí),求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中,若、的三條邊長(zhǎng),則下列結(jié)論:①對(duì)于一切都有;②存在使、、不能構(gòu)成一個(gè)三角形的三邊長(zhǎng);③為鈍角三角形,存在,使,其中正確的個(gè)數(shù)為______個(gè)

A. 3B. 2C. 1D. 0

查看答案和解析>>

同步練習(xí)冊(cè)答案