【題目】如圖,四棱錐中,底面,為直角梯形,,,,,過點作平面平行于平面,平面與棱,,,分別相交于點,,,.
(1)求的長度;
(2)求二面角的余弦值.
【答案】(1);(2).
【解析】試題分析:
(1)【法一】(Ⅰ)由面面平行的性質(zhì)定理可得,,
則∽,由相似三角形的性質(zhì)計算可得
【法二】由面面平行的性質(zhì)定理可得,,
則∽,由題意結(jié)合余弦定理可得.
(2)建立空間直角坐標系,由題意可得平面的法向量為,平面的法向量則二面角的余弦值.
試題解析:
(1)【法一】(Ⅰ)因為平面,平面平面,
,平面平面,所以,同理,
因為∥,
所以∽,且,
所以,,
同理,
連接,則有∥,
所以,,所以,同理,,
過點作∥交于,則
【法二】因為平面,平面平面,,
平面平面,
根據(jù)面面平行的性質(zhì)定理,所以,同理,
因為,所以,且,
又因為∽,,所以,
同理,,
如圖:作,
所以,
故四邊形為矩形,即,
在中,所以,所以.
(2)建立如圖所示空間直角坐標系,
,設平面的法向量為,
,令,得,
因為平面平面,所以平面的法向量
,二面角的余弦值為
科目:高中數(shù)學 來源: 題型:
【題目】某中學隨機選取了名男生,將他們的身高作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖,觀察圖中數(shù)據(jù),完成下列問題.
()求的值及樣本中男生身高在(單位:)的人數(shù).
()假設用一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高.
()在樣本中,從身高在和(單位:)內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學為研究學生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名高三學生平均每天課外體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間/分鐘 | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學生日均課外體育鍛煉時間在的學生評價為“課外體育達標”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
課外體育不達標 | 課外體育達標 | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(2)通過計算判斷是否能在犯錯誤的概率不超過的前提下認為“課外體育達標”性別有關(guān)?
參考公式,其中
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,,且,若以為左右焦點的橢圓經(jīng)過點.
(1)求的標準方程;
(2)設過右焦點且斜率為的動直線與相交于兩點,探究在軸上是否存在定點,使得為定值?若存在,試求出定值和點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為 (為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標原點為極點, 軸正半軸為極軸建立極坐標系.
(1)求圓和圓的極坐標方程;
(2)過點的直線與圓異于點的交點分別為點,與圓異于點的交點分別為點,且,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)若在處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;
(2)若當時, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:,過且與圓相切的動圓圓心為.
(1)求點的軌跡的方程;
(2)設過點的直線交曲線于,兩點,過點的直線交曲線于,兩點,且,垂足為(,,,為不同的四個點).
①設,證明:;
②求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (是常數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,函數(shù)有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若曲線與曲線在公共點處有共同的切線,求實數(shù)的值;
(Ⅱ)在(Ⅰ)的條件下,試問函數(shù)是否有零點?如果有,求出該零點;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com