(本題滿分15分) 如圖,四邊形中,為正三角形,,,與交于點(diǎn).將沿邊折起,使點(diǎn)至點(diǎn),已知與平面所成的角為,且點(diǎn)在平面內(nèi)的射影落在內(nèi).
(Ⅰ)求證:平面;
(Ⅱ)若已知二面角的余弦值為,求的大小.
(Ⅰ)只需證、即可;(Ⅱ)。
【解析】
試題分析:(Ⅰ)易知為的中點(diǎn),
則,又,
又,平面,
所以平面 (5分)
(Ⅱ)方法一:以為軸,為軸,過垂直于
平面向上的直線為軸建立如圖所示空間
直角坐標(biāo)系,則, (7分)
易知平面的法向量為 (8分)
,設(shè)平面的法向量為
則由得,
解得,,令,則 (11分)
則
解得,,即,即,
又,∴ 故.(15分)
考點(diǎn):線面垂直的判定定理;線面角;二面角的求法。
點(diǎn)評(píng):用綜合法求二面角,往往需要作出平面角,這是幾何中一大難點(diǎn),而用向量法求解二面角無需作出二面角的平面角,只需求出平面的法向量,經(jīng)過簡單運(yùn)算即可,從而體現(xiàn)了空間向量的巨大作用.二面角的向量求法: ①若AB、CD分別是二面的兩個(gè)半平面內(nèi)與棱垂直的異面直線,則二面角的大小就是向量與的夾角; ②設(shè)分別是二面角的兩個(gè)面α,β的法向量,則向量的夾角(或其補(bǔ)角)的大小就是二面角的平面角的大小。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿分15分)
某有獎(jiǎng)銷售將商品的售價(jià)提高120元后允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),每次抽獎(jiǎng)的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機(jī)產(chǎn)生一個(gè) 1~6的整數(shù)數(shù)作為號(hào)碼,若該號(hào)碼是3的倍數(shù)則顧客獲獎(jiǎng),每次中獎(jiǎng)的獎(jiǎng)金為100元,運(yùn)用所學(xué)的知識(shí)說明這樣的活動(dòng)對(duì)商家是否有利。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,求實(shí)數(shù)的最大值;
(Ⅱ)若對(duì)任意的,都成立,求實(shí)數(shù)的取值范圍.
注:為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知直線與曲線相切
1)求b的值;
2)若方程在上恰有兩個(gè)不等的實(shí)數(shù)根,求
①m的取值范圍;
②比較的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知拋物線:(),焦點(diǎn)為,直線交拋物線于、兩點(diǎn),是線段的中點(diǎn),
過作軸的垂線交拋物線于點(diǎn),
(1)若拋物線上有一點(diǎn)到焦點(diǎn)的距離為,求此時(shí)的值;
(2)是否存在實(shí)數(shù),使是以為直角頂點(diǎn)的直角三角形?若存在,求出的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)設(shè),若在上不單調(diào)且僅在處取得最大值,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com