(2013•天津)已知下列三個命題:
①若一個球的半徑縮小到原來的
1
2
,則其體積縮小到原來的
1
8
;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標準差也相等;
③直線x+y+1=0與圓x2+y2=
1
2
相切.
其中真命題的序號是( 。
分析:對于①由球的體積公式V=
4
3
πR3
可知①正確;對于②通過舉反例,如2,2,2和1,2,3;這兩組數(shù)據(jù)的平均數(shù)相等,它們的標準差不相等,故②錯;對于③利用圓x2+y2=
1
2
的圓心到直線x+y+1=0的距離與圓的半徑之間的關系進行判斷即可.
解答:解:①由球的體積公式V=
4
3
πR3
可知,若一個球的半徑縮小到原來的
1
2
,則其體積縮小到原來的
1
8
;故①正確;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標準差不一定相等,如2,2,2和1,2,3;這兩組數(shù)據(jù)的平均數(shù)相等,它們的標準差不相等,故②錯;
③圓x2+y2=
1
2
的圓心到直線x+y+1=0的距離d=
1
2
=
2
2
=半徑r,故直線x+y+1=0與圓x2+y2=
1
2
相切,③正確.
故選C.
點評:本題主要考查了命題的真假判斷與應用,主要考查了球的體積公式、平均數(shù)和方差、直線與圓的位置關系等,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•天津)已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增.若實數(shù)a滿足f(log2a)+f(log
1
2
a)≤2f(1)
,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天津)已知函數(shù)f(x)=x(1+a|x|).設關于x的不等式f(x+a)<f(x)的解集為A,若[-
1
2
,
1
2
]⊆A
,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天津)已知過點P(2,2)的直線與圓(x-1)2+y2=5相切,且與直線ax-y+1=0垂直,則a=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•天津)已知a,b∈R,i是虛數(shù)單位.若(a+i)(1+i)=bi,則a+bi=
1+2i
1+2i

查看答案和解析>>

同步練習冊答案