【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實(shí)數(shù)a的取值范圍.

【答案】)當(dāng)時(shí),函數(shù)單調(diào)遞增區(qū)間為,當(dāng)時(shí),函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為; (

【解析】試題分析:()先求出,然后討論當(dāng)時(shí),當(dāng)時(shí)的兩種情況即得.

)分以下情況討論:當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),綜合即得.

試題解析:()由

可得,

,

當(dāng)時(shí),

時(shí), ,函數(shù)單調(diào)遞增;

當(dāng)時(shí),

時(shí), ,函數(shù)單調(diào)遞增,

時(shí), ,函數(shù)單調(diào)遞減.

所以當(dāng)時(shí), 單調(diào)遞增區(qū)間為;

當(dāng)時(shí),函數(shù)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

)由()知, .

當(dāng)時(shí), , 單調(diào)遞減.

所以當(dāng)時(shí), , 單調(diào)遞減.

當(dāng)時(shí), , 單調(diào)遞增.

所以x=1處取得極小值,不合題意.

當(dāng)時(shí), ,由()內(nèi)單調(diào)遞增,

可得當(dāng)當(dāng)時(shí), , 時(shí),

所以(0,1)內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,

所以x=1處取得極小值,不合題意.

當(dāng)時(shí),即時(shí), (0,1)內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,

所以當(dāng)時(shí), , 單調(diào)遞減,不合題意.

當(dāng)時(shí),即,當(dāng)時(shí), , 單調(diào)遞增,

當(dāng)時(shí), , 單調(diào)遞減,

所以f(x)x=1處取得極大值,合題意.

綜上可知,實(shí)數(shù)a的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xax+(a1)。

1)討論函數(shù)的單調(diào)性;

2)證明:若,則對任意xx,xx,有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過曲線的左焦點(diǎn)且和雙曲線實(shí)軸垂直的直線與雙曲線交于點(diǎn)A,B,若在雙曲線的虛軸所在的直線上存在—點(diǎn)C,使得,則雙曲線離心率e的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=sin+cos,x∈R

1)求函數(shù)fx)的最小正周期,并求函數(shù)fx)在x∈[﹣2π,2π]上的單調(diào)遞增區(qū)間;

2)函數(shù)fx=sinxx∈R)的圖象經(jīng)過怎樣的平移和伸縮變換可以得到函數(shù)fx)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An , 第n項(xiàng)之后各項(xiàng)an+1 , an+2…的最小值記為Bn , dn=An﹣Bn
(1)若{an}為2,1,4,3,2,1,4,3…,是一個(gè)周期為4的數(shù)列(即對任意n∈N* , an+4=an),寫出d1 , d2 , d3 , d4的值;
(2)設(shè)d是非負(fù)整數(shù),證明:dn=﹣d(n=1,2,3…)的充分必要條件為{an}是公差為d的等差數(shù)列;
(3)證明:若a1=2,dn=1(n=1,2,3,…),則{an}的項(xiàng)只能是1或者2,且有無窮多項(xiàng)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過點(diǎn).設(shè)為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),連結(jié)并延長,分別交橢圓于兩點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線的斜率分別為,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位實(shí)行職工值夜班制度,已知名職工每星期一到星期五都要值一次夜班,且沒有兩人同時(shí)值夜班,星期六和星期日不值夜班,若昨天值夜班,從今天起至少連續(xù)天不值夜班,星期四值夜班,則今天是星期幾(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)四面體的六條棱的長分別為1,1,1,1, 和a,且長為a的棱與長為 的棱異面,則a的取值范圍是(
A.(0,
B.(0,
C.(1,
D.(1,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體ABCDEF中,點(diǎn)O是矩形ABCD的對角線的交點(diǎn),面CDE是等邊三角形,棱

(1)證明FO∥平面CDE

(2)設(shè)BC=CD,證明EO⊥平面CDE。

查看答案和解析>>

同步練習(xí)冊答案