【題目】如圖,在三棱錐A﹣BOC中,OA,OB,OC兩兩垂直,點(diǎn)D,E分別為棱BC,AC的中點(diǎn),F(xiàn)在棱AO上,且滿足OF= ,已知OA=OC=4,OB=2.
(1)求異面直線AD與OC所成角的余弦值;
(2)求二面角C﹣EF﹣D的正弦值.
【答案】
(1)解:如圖,以O(shè)為原點(diǎn),分別以O(shè)B、OC、OA所在直線為x軸、y軸、z軸正方向建立空間直角坐標(biāo)系.
依題意可得:O(0,0,0),A(0,0,4),B(2,0,0),C(0,4,0),D(1,2,0),E(0,2,2),F(xiàn)(0,0,1),
∴ , ,
于是 , , ,
∴cos< >=
(2)解:平面AOC的一個法向量為 .
設(shè) 為平面DEF的一個法向量,
又 , ,
則 ,取z=2,則x=4,y=﹣1,
∴ 為平面DEF的一個法向量,
從而cos< >= ,
設(shè)二面角C﹣EF﹣D的大小為θ,則|cosθ|= .
∵θ∈[0,π],∴sinθ= .
因此二面角C﹣EF﹣D的正弦值為 .
【解析】(1)根據(jù)題意建立空間直角坐標(biāo)系,進(jìn)而求出各個點(diǎn)的坐標(biāo),進(jìn)而得到和的坐標(biāo),利用向量的數(shù)量積公式可求出其余弦值。(2)根據(jù)題意可得平面AOC的一個法向量為 = ( 2 , 0 , 0 ) .求出平面DEF的一個法向量的坐標(biāo),利用向量的數(shù)量積可求出二面角平面角的余弦值,進(jìn)而得到正弦值。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為L,A、B是拋物線上的兩個動點(diǎn),且滿足∠AFB= .設(shè)線段AB的中點(diǎn)M在L上的投影為N,則 的最大值是( )
A.
B.1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為2,點(diǎn)P為面ADD1A1的對角線AD1的中點(diǎn).PM⊥平面ABCD交AD與M,MN⊥BD于N.
(1)求異面直線PN與A1C1所成角的大小;(結(jié)果可用反三角函數(shù)值表示)
(2)求三棱錐P﹣BMN的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=mlnx(m∈R),g(x)=cosx.
(1)若函數(shù) 在(1,+∞)上單調(diào)遞增,求m的取值范圍;
(2)設(shè)函數(shù)φ(x)=f(x)+g(x),若對任意的 ,都有φ(x)≥0,求m的取值范圍;
(3)設(shè)m>0,點(diǎn)P(x0 , y0)是函數(shù)f(x)與g(x)的一個交點(diǎn),且函數(shù)f(x)與g(x)在點(diǎn)P處的切線互相垂直,求證:存在唯一的x0滿足題意,且 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊半圓形空地,開發(fā)商計(jì)劃建一個矩形游泳池ABCD及其矩形附屬設(shè)施EFGH,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化.其中半圓的圓心為O,半徑為R,矩形的一邊AB在直徑上,點(diǎn)C,D,G,H在圓周上,E,F(xiàn)在邊CD上,且 ,設(shè)∠BOC=θ.
(1)記游泳池及其附屬設(shè)施的占地面積為f(θ),求f(θ)的表達(dá)式;
(2)怎樣設(shè)計(jì)才能符合園林局的要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,2), =(cosα,sinα),設(shè) = +t (t為實(shí)數(shù)).
(1)若 ,求當(dāng)| |取最小值時實(shí)數(shù)t的值;
(2)若 ⊥ ,問:是否存在實(shí)數(shù)t,使得向量 ﹣ 和向量 的夾角為 ,若存在,請求出t;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)事件A表示“關(guān)于x的一元二次方程x2+ax+b2=0有實(shí)根”,其中a,b為實(shí)常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機(jī)數(shù),b為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=2,點(diǎn)列Pn(n=1,2,…)在△ABC內(nèi)部,且△PnAB與△PnAC的面積比為2:1,若對n∈N*都存在數(shù)列{bn}滿足 ,則a4的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)開設(shè)甲、乙、丙三門選修課供學(xué)生任意選修(也可不選),假設(shè)學(xué)生是否選修哪門課彼此互不影響.已知某學(xué)生只選修甲一門課的概率為0.08,選修甲和乙兩門課的概率為0.12,至少選修一門的概率是0.88.
(1)求該學(xué)生選修甲、乙、丙的概率分別是多少?
(2)用ξ表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com