(本小題滿分14分)

設(shè)橢圓)的兩個焦點(diǎn)是),且橢圓與圓有公共點(diǎn).

(1)求的取值范圍;

(2)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;

(3)對(2)中的橢圓,直線)與交于不同的兩點(diǎn),若線段的垂直平分線恒過點(diǎn),求實(shí)數(shù)的取值范圍.

 

【答案】

(1)(2)(3)

【解析】

試題分析:解:(1)由已知,,

∴方程組有實(shí)數(shù)解,從而,故 …2分

所以,即的取值范圍是.                   ……………4分

(2)設(shè)橢圓上的點(diǎn)到一個焦點(diǎn)的距離為,

).                           ……………6分

,∴當(dāng)時,

于是,,解得 .

∴所求橢圓方程為.                       ……………8分

(3)由 (*)

∵直線與橢圓交于不同兩點(diǎn), ∴△,即.①  ………10分

設(shè),則是方程(*)的兩個實(shí)數(shù)解,

,∴線段的中點(diǎn)為

又∵線段的垂直平分線恒過點(diǎn),∴

,即(k)②          ……………12分

由①,②得,,又由②得,

∴實(shí)數(shù)的取值范圍是.                            ……………14分

考點(diǎn):橢圓的方程和性質(zhì);直線的方程;兩直線垂直的判定定理。

點(diǎn)評:本題第一小題也可這樣來求解,橢圓跟y軸正半軸的交點(diǎn)為,若橢圓要與圓相交,則;第二小題可以結(jié)合橢圓的特點(diǎn)來求,當(dāng)橢圓上的點(diǎn)是時,它到附近的焦點(diǎn)的距離就是最短距離;第三小題需要注意直線與橢圓相交時應(yīng)滿足的條件。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案