【題目】如圖1所示,在等腰梯形中, .把沿折起,使得,得到四棱錐.如圖2所示.
(1)求證:面面;
(2)求平面與平面所成銳二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)先由平面幾何知識(shí)證明,可得面,從而得,進(jìn)而可得,于是面,最后由面面垂直的判定定理可得結(jié)論;(2)以點(diǎn)為原點(diǎn),以所在直線分別為軸,建立如圖所示的空間直角坐標(biāo)系,分別求出兩半平面的一個(gè)法向量,根據(jù)空間向量夾角余弦公式可得結(jié)果.
試題解析:(1)證明:在等腰梯形中,可知.因?yàn)?/span>,可得.
又因?yàn)?/span>,即,則.
又,可得面,故.
又因?yàn)?/span>,則,
,則,
所以,
又,所以面,
又面,所以面面;
(2)
設(shè),過(guò)點(diǎn)作交于點(diǎn),
以點(diǎn)為原點(diǎn),以所在直線分別為軸,建立如圖所示的空間直角坐標(biāo)系.
在中,∵, ,
∴,則,
∵,
∴,則,
∵,
∴,
∴,
∴,
設(shè)平面的法向量為,
由,得,
取,可得平面的法向量為,
設(shè)平面的一個(gè)法向量為,
由,得,
取,可得平面的一個(gè)法向量為.
設(shè)平面與平面所成銳二面角為,
則,
所以平面與平面所成銳二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)是原點(diǎn),以軸為對(duì)稱軸,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點(diǎn), 在拋物線上,直線, 分別與軸交于點(diǎn), , .求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解高三學(xué)生的數(shù)學(xué)成績(jī),抽取了某班60名學(xué)生,將所得數(shù)據(jù)整理后,畫出如圖所示的頻率分布直方圖,已知從左到右各長(zhǎng)方形高的比為2:3:5:6:3:1,則該班學(xué)生數(shù)學(xué)成績(jī)?cè)赱100,120]之間的學(xué)生人數(shù)是( )
A.32
B.24
C.18
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(α)= .
(1)若α為第二象限角且f(α)=﹣ ,求 的值;
(2)若5f(α)=4f(3α+2β).試問(wèn)tan(2α+β)tan(α+β)是否為定值(其中α≠kπ+ ,α+β≠kπ+ ,2α+β≠kπ+ ,3α+2β≠kπ+ ,k∈Z)?若是,請(qǐng)求出定值;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失。M分為100分).
(1)求圖中的值;
(2)估計(jì)該次考試的平均分(同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值代表);
(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?
(參考公式: ,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為, .
(1)求數(shù)列的通項(xiàng)公式;
(2)令,設(shè)數(shù)列的前項(xiàng)和為,求;
(3)令,若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓的圓心為,直線過(guò)點(diǎn)且不與軸、軸垂直,且與圓于, 兩點(diǎn),過(guò)作的平行線交直線于點(diǎn).
(1)證明為定值,并寫出點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,直線交于兩點(diǎn),過(guò)且與垂直的直線與圓交于兩點(diǎn),求與的面積之和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動(dòng)力、獲得利潤(rùn)及每天資源限額(最大供應(yīng)量)如表所示:
產(chǎn)品 | 甲產(chǎn)品 | 乙產(chǎn)品 | 資源限額 |
煤(t) | 9 | 4 | 360 |
電力(kw·h) | 4 | 5 | 200 |
勞力(個(gè)) | 3 | 10 | 300 |
利潤(rùn)(萬(wàn)元) | 7 | 12 |
問(wèn):每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤(rùn)總額最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖空間四邊形ABCD,E、F、G、H分別為AB、AD、CB、CD的中點(diǎn)且AC=BD,AC⊥BD,試判斷四邊形EFGH的形狀,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com