【題目】已知函數(shù),若存在,使得,則的取值范圍是( )
A. B.
C. D.
【答案】A
【解析】
先由函數(shù)的單調(diào)性結(jié)合等式,得出,由此得出關(guān)于的方程在區(qū)間上有實(shí)解,利用參變量分離法得出在有實(shí)根,轉(zhuǎn)化為直線與函數(shù)在區(qū)間有交點(diǎn),利用數(shù)形結(jié)合思想求解即可.
易知函數(shù)在區(qū)間上單調(diào)遞增,則存在,使得不等式成立,所以,,得.
①假設(shè),則,不合乎題意;
②假設(shè),則,不合乎題意;
③假設(shè),則,合乎題意.
由上可知,關(guān)于的方程在區(qū)間上有實(shí)解,
由,得,所以,,構(gòu)造函數(shù).
則直線與函數(shù)在區(qū)間有交點(diǎn).
,令,則,令,得.
當(dāng)時(shí),;當(dāng)時(shí),.
所以,函數(shù)在處取得最小值,
即,,
所以,對(duì)任意的,,則函數(shù)在區(qū)間上單調(diào)遞增.
,,
所以,當(dāng)時(shí),直線與函數(shù)在區(qū)間有交點(diǎn).
因此,實(shí)數(shù)的取值范圍是,故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游風(fēng)景區(qū)發(fā)行的紀(jì)念章即將投放市場(chǎng),根據(jù)市場(chǎng)調(diào)研情況,預(yù)計(jì)每枚該紀(jì)念章的市場(chǎng)價(jià)y(單位:元)與上市時(shí)間x(單位:天)的數(shù)據(jù)如下:
上市時(shí)間x天 | 2 | 6 | 20 |
市場(chǎng)價(jià)y元 | 102 | 78 | 120 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場(chǎng)價(jià)y與上市時(shí)間x的變化關(guān)系并說明理由:①;②;③;
(2)利用你選取的函數(shù),求該紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;
(3)利用你選取的函數(shù),若存在,使得不等式成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分,設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(2)表示開始第4次發(fā)球時(shí)乙的得分,求的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小值及取到最小值時(shí)自變量x的集合;
(2)指出函數(shù)y=的圖象可以由函數(shù)y=sinx的圖象經(jīng)過哪些變換得到;
(3)當(dāng)x∈[0,m]時(shí),函數(shù)y=f(x)的值域?yàn)?/span>,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相。某超市計(jì)劃每年六月從精準(zhǔn)扶貧戶中訂購荔枝,每天進(jìn)貨量相同且每公斤20元,當(dāng)日18時(shí)前售價(jià)為每公斤24元,18時(shí)后以每公斤16元的價(jià)格銷售完畢。根據(jù)往年情況,每天的荔枝需求量與當(dāng)天平均氣溫有關(guān),如下表表示:
平均氣溫t(攝氏度) | ||||
需求量n(公斤) | 50 | 100 | 200 | 300 |
為了確定今年6月1日6月30日的日購數(shù)量,統(tǒng)計(jì)了前三年六月各天的平均氣溫,得到如下的頻數(shù)分布表:
平均氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
(1)假設(shè)該超市在以往三年內(nèi)的六月每天進(jìn)貨100公斤,求荔枝為超市帶來的日平均利潤(結(jié)果取整數(shù)).
(2)若今年該超市進(jìn)貨量為200公斤,以記錄的各需求量的頻率作為相應(yīng)的概率,求當(dāng)天超市不虧損的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車“定速巡航”技術(shù)是用于控制汽車的定速行駛,當(dāng)汽車被設(shè)定為定速巡航狀態(tài)時(shí),電腦根據(jù)道路狀況和汽車的行駛阻力自動(dòng)控制供油量,使汽車始終保持在所設(shè)定的車速行駛,而無需司機(jī)操縱油門,從而減輕疲勞,促進(jìn)安全,節(jié)省燃料.某汽車公司為測(cè)量某型號(hào)汽車定速巡航狀態(tài)下的油耗情況,選擇一段長(zhǎng)度為240km的平坦高速路段進(jìn)行測(cè)試.經(jīng)多次測(cè)試得到一輛汽車每小時(shí)耗油量F(單位:L)與速度v(單位:km/h)()的下列數(shù)據(jù):
v | 0 | 40 | 60 | 80 | 120 |
F | 0 | 10 | 20 |
為了描述汽車每小時(shí)耗油量與速度的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:
,,.
(1)請(qǐng)選出你認(rèn)為最符合實(shí)際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式.
(2)這輛車在該測(cè)試路段上以什么速度行駛才能使總耗油量最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少兒游泳隊(duì)需對(duì)隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測(cè)試;已知隊(duì)員的測(cè)試分?jǐn)?shù)與仰臥起坐
個(gè)數(shù)之間的關(guān)系如下:;測(cè)試規(guī)則:每位隊(duì)員最多進(jìn)行三組測(cè)試,
每組限時(shí)1分鐘,當(dāng)一組測(cè)完,測(cè)試成績(jī)達(dá)到60分或以上時(shí),就以此組測(cè)試成績(jī)作為該
隊(duì)員的成績(jī),無需再進(jìn)行后續(xù)的測(cè)試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”
在一分鐘內(nèi)限時(shí)測(cè)試的頻率分布直方圖如下:
(1)計(jì)算值,并根據(jù)直方圖計(jì)算“喵兒”1分鐘內(nèi)仰臥起坐的個(gè)數(shù);
(2)計(jì)算在本次的三組測(cè)試中,“喵兒”得分等于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過且斜率為的直線交拋物線于,兩點(diǎn).若線段的垂直平分線與軸交于點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)在直角坐標(biāo)系的第一象限內(nèi)的任意兩點(diǎn)作如下定義:若,那么稱點(diǎn)是點(diǎn)的“上位點(diǎn)”同時(shí)點(diǎn)是點(diǎn)的“下位點(diǎn)”
(1)試寫出點(diǎn)的一個(gè)“上位點(diǎn)”坐標(biāo)和一個(gè)“下位點(diǎn)”坐標(biāo);
(2)已知點(diǎn)是點(diǎn)的“上位點(diǎn)”,判斷是否一定存在點(diǎn)滿足既是點(diǎn)的“上位點(diǎn)”,又是點(diǎn)的“下位點(diǎn)”若存在,寫出一個(gè)點(diǎn)坐標(biāo),并證明:若不存在,則說明理由;
(3)設(shè)正整數(shù)滿足以下條件:對(duì)集合,總存在,使得點(diǎn)既是點(diǎn)的“下位點(diǎn)”,又是點(diǎn)的“上位點(diǎn)”,求正整數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com