(本題滿分15分)定義在上的函數(shù),對任意的,都有成立,且當(dāng)時(shí),.
(1)試求的值;
(2)證明:對任意都成立;
(3)證明:在上是減函數(shù);
(4)當(dāng)時(shí),解不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省名校新高考研究聯(lián)盟高三第二次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)如圖,分別過橢圓E:左右焦點(diǎn)、的動直線l1、l2相交于P點(diǎn),與橢圓E分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率、、、滿足.已知當(dāng)l1與x軸重合時(shí),,.
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在定點(diǎn)M、N,使得為定值.若存在,求出M、N點(diǎn)坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考文科數(shù)學(xué) 題型:填空題
22.(本題滿分15分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期第二次統(tǒng)練文科數(shù)學(xué) 題型:解答題
(本題滿分15分)設(shè)橢圓 C1:()的一個(gè)頂點(diǎn)與拋物線 C2: 的焦點(diǎn)重合,F(xiàn)1,F(xiàn)2 分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) F2 的直線 與橢圓 C 交于 M,N 兩點(diǎn).
(I)求橢圓C的方程;
(II)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說明理由;
(III)若 AB 是橢圓 C 經(jīng)過原點(diǎn) O 的弦,MN//AB,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省三校高三聯(lián)考理科數(shù)學(xué) 題型:解答題
(本題滿分15分) 已知拋物線的頂點(diǎn)是橢圓的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合.
(1)求拋物線的方程;
(2)已知動直線過點(diǎn),交拋物線于、兩點(diǎn).
若直線的斜率為1,求的長;
是否存在垂直于軸的直線被以為直徑的圓所截得的弦長恒為定值?如果存在,求出的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三高考模擬試題理數(shù) 題型:解答題
(本題滿分15分)如圖,已知直線與拋物線和圓都相切,是的焦點(diǎn).
(1)求與的值;
(2)設(shè)是上的一動點(diǎn),以為切點(diǎn)作拋物線的切線,直線交軸于點(diǎn),以為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;
(3)在(2)的條件下,記點(diǎn)所在的定直線為,直線與軸交點(diǎn)為,連接交拋物線于兩點(diǎn),求的面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com