(本小題滿分12分)
設(shè)函數(shù),曲線在點處的切線方程
(1)求的解析式,并判斷函數(shù)的圖像是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由。
(2)證明:曲線上任一點的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個單位后與拋物線為非0常數(shù))的圖象有幾個交點?(說明理由)
(1) 的圖像是以點為中心的中心對稱圖形.
(2) 三角形的面積為定值
(3) 由三次函數(shù)的圖象是連續(xù)的可知F(x)至少有一零點                           
當(dāng)在R上為減函數(shù)(減函數(shù)至多有一個零點),
所以此時F(x)有且只有一個零點;

試題分析:解:(1),                                      
曲線在點處的切線方程為y=3,
于是                解得        
,故.                                       
,滿足,所以是奇函數(shù)     
所以,其圖像是以原點(0,0)為中心的中心對稱圖形.                       
而函數(shù)的圖像按向量平移,即得到函數(shù)的圖像,
故函數(shù)的圖像是以點為中心的中心對稱圖形.                        
(2)證明:在曲線上任取一點.  由知,     
過此點的切線方程為.               
,切線與直線交點為.                 
,切線與直線交點為
直線與直線的交點為.                                  
從而所圍三角形的面積為.  
所以,所圍三角形的面積為定值.                                        
(3)將函數(shù)的圖象向左平移一個單位后得到的函數(shù)為,
它與拋物線的交點個數(shù)等于方程=的解的個數(shù)          
法一:
(解的個數(shù),(易知0不是其解,不產(chǎn)生增根)  
的零點(與x軸交點的橫坐標(biāo))的個數(shù)    

由三次函數(shù)的圖象是連續(xù)的可知F(x)至少有一零點                             11分

當(dāng)在R上為減函數(shù)(減函數(shù)至多有一個零點),
所以此時F(x)有且只有一個零點;
點評:解決的關(guān)鍵是能結(jié)合導(dǎo)數(shù)的幾何意義表示切線方程,進而分析函數(shù)的零點個數(shù),需要對于a分類討論得到,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
已知函數(shù)的圖象關(guān)于原點對稱,且.
(1)求函數(shù)的解析式;
(2)若在[-1,1]上是增函數(shù),求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是定義在上的函數(shù),且,當(dāng)時,,那么當(dāng)時,=                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)在人們經(jīng)常使用電腦,若坐姿不正確,易造成眼睛疲勞,腰酸頸痛.一般正確的坐姿是:眼睛望向顯示器屏幕時,應(yīng)成20°的俯角α(即望向屏幕上邊緣的水平視線與望向屏幕中心的視線的夾角);而小臂平放,肘部形成100°的鈍角β.張燕家剛買的電腦顯示器屏幕的高度為24.5cm,屏幕的上邊緣到顯示器支座底部的距離為36cm.已知張燕同學(xué)眼部到肩部的垂直距離為20cm,大臂長(肩部到肘部的距離)DE=28cm,張燕同學(xué)坐姿正確時肩部到臀部的距離是DM=53cm,請你幫張燕同學(xué)計算一下:
(1)她要按正確坐姿坐在電腦前,眼與顯示器屏幕的距離應(yīng)是多少?(精確到0.1cm)
(2)她要訂做一套適合自己的電腦桌椅,桌、椅及鍵盤三者之間的高度應(yīng)如何搭配?(精確到0.1cm)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在上的偶函數(shù)滿足,且在上是減函數(shù),是鈍角三角形的兩個銳角,則下列結(jié)論正確的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義函數(shù),若存在常數(shù)C,對任意的,存在唯一的,使得,則稱函數(shù)在D上的幾何平均數(shù)為C.已知,則函數(shù)上的幾何平均數(shù)為(     )
A.        B.       C.      D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義域為的連續(xù)函數(shù),對任意都有,且其導(dǎo)函數(shù)滿足,則當(dāng)時,有(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,函數(shù)的圖象是折線段,其中的坐標(biāo)分別為,則          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出以下結(jié)論:①是奇函數(shù);②既不是奇函數(shù)也不是偶函數(shù);③ 是偶函數(shù) ;④是奇函數(shù).其中正確的有(    )個
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案