【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球2個.從袋子中不放回地隨機抽取小球兩個,每次抽取一個球,記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為.

(1)記事件表示“”,求事件的概率;

(2)在區(qū)間內(nèi)任取兩個實數(shù),求“事件恒成立”的概率.

【答案】(1) ;(2).

【解析】試題分析:(1)從袋子中不放回地隨機抽取2個球,共有基本事件12個,其中“a+b=2”為事件A的基本事件有4個,故可求概率.(2)記“x2+y2>(a﹣b)2恒成立為事件B,則事件B等價于“x2+y2>4恒成立,(x,y)可以看成平面中的點,確定全部結(jié)果所構(gòu)成的區(qū)域,事件B構(gòu)成的區(qū)域,利用幾何概型可求得結(jié)論.

(1)兩次不放回抽取小球的所有基本事件為,,,,,,,,共12個,事件包含的基本事件為,,,共4個.

所以.

(2)記“恒成立”為事件

則事件等價于“”.

可以看成平面中的點,

則全部結(jié)果所構(gòu)成的區(qū)域,

而事件所構(gòu)成的區(qū)域,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從“充分不必要條件”“必要不充分條件”“充要條件”“既不充分也不必要條件”中,選出適當(dāng)?shù)囊环N填空:

(1)記集合A{1,p,2},B{2,3},則“p3”是“ABB”的__________________;

(2)a1”是“函數(shù)f(x)|2xa|在區(qū)間上為增函數(shù)”的________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)證明數(shù)列{an﹣n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn;
(3)證明不等式Sn+1≤4Sn , 對任意n∈N*皆成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知非零向量 , , 滿足 =2 , =k + ,給出以下結(jié)論:
①若 不共線, 共線,則k=﹣2;
②若 不共線, 共線,則k=2;
③存在實數(shù)k,使得 不共線, 共線;
④不存在實數(shù)k,使得 不共線, 共線.
其中正確結(jié)論的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(Ⅰ)若是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)令,若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0,且直線l與圓C交于A、B兩點.
(1)若|AB|= ,求直線l的傾斜角;
(2)若點P(1,1),滿足2 = ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中,.
)若函數(shù)處有極小值,求,的值;
)若,設(shè),求證:當(dāng)時,;
)若,,對于給定,,,其中,,,若.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的短軸長為,右焦點為,點是橢圓上異于左、右頂點的一點.

(1)求橢圓的方程;

(2)若直線與直線交于點,線段的中點為,證明:點關(guān)于直線的對稱點在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)銳角△ABC的三內(nèi)角A、B、C所對邊的邊長分別為a、b、c,且 a=1,B=2A,則b的取值范圍為(
A.( ,
B.(1,
C.( ,2)
D.(0,2)

查看答案和解析>>

同步練習(xí)冊答案