【題目】某比賽為甲、乙兩名運(yùn)動(dòng)員制訂下列發(fā)球規(guī)則:規(guī)則一:投擲一枚硬幣,出現(xiàn)正面向上,甲發(fā)球,否則乙發(fā)球;規(guī)則二:從裝有個(gè)紅球與個(gè)黑球的布袋中隨機(jī)地取出個(gè)球,如果同色,甲發(fā)球,否則乙發(fā)球;規(guī)則三:從裝有個(gè)紅球與個(gè)黑球的布袋中隨機(jī)地取出個(gè)球,如果同色,甲發(fā)球,否則乙發(fā)球.

其中對(duì)甲、乙公平的規(guī)則是(

A.規(guī)則一和規(guī)則二B.規(guī)則一和規(guī)則三C.規(guī)則二和規(guī)則三D.規(guī)則二

【答案】B

【解析】

計(jì)算出三種規(guī)則下甲發(fā)球和乙發(fā)球的概率,當(dāng)兩人發(fā)球的概率均為時(shí),該規(guī)則對(duì)甲、乙公平,由此可得出正確選項(xiàng).

對(duì)于規(guī)則一,每人發(fā)球的機(jī)率都是,是公平的;

對(duì)于規(guī)則二,記個(gè)紅球分別為紅,紅個(gè)黑球分別為黑、黑,

則隨機(jī)取出個(gè)球的所有可能的情況有(紅,紅),(紅,黑),(紅,黑),(紅,黑),(紅,黑),(黑,黑),共種,其中同色的情況有種,

所以甲發(fā)球的可能性為,不公平;

對(duì)于規(guī)則三,記個(gè)紅球分別為紅、紅、紅,則隨機(jī)取出個(gè)球所有可能的情況有(紅,紅),(紅,紅),(紅,黑),(紅,紅),(紅,黑),(紅,黑),共種,其中同色的情況有種,所以兩人發(fā)球的可能性均為,是公平的.

因此,對(duì)甲、乙公平的規(guī)則是規(guī)則一和規(guī)則三.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q0,S2=2a2-2S3=a4-2,數(shù)列{an}滿足a2=4b1,nbn+1-n+1bn=n2+n,(nN*.

1)求數(shù)列{an}的通項(xiàng)公式;

2)證明數(shù)列{}為等差數(shù)列;

3)設(shè)數(shù)列{cn}的通項(xiàng)公式為:Cn=,其前n項(xiàng)和為Tn,求T2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),直線的斜率與直線的斜率乘積為.

(1)求橢圓的方程;

(2)不經(jīng)過(guò)點(diǎn)的直線)與橢圓交于,兩點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為(與點(diǎn)不重合),直線軸分別交于兩點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知點(diǎn),過(guò)點(diǎn)作直線與圓和拋物線都相切.

1)求拋物線的兩切線的方程;

2)設(shè)拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線相交于、兩點(diǎn),與拋物線的準(zhǔn)線交于點(diǎn)(其中點(diǎn)靠近點(diǎn)),且,求的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上單調(diào)遞增,函數(shù)上存在單調(diào)遞減區(qū)間.

1)若“”為真,求實(shí)數(shù)的取值范圍;

2)若“”為真,“”為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,為梯形,,,.

(1)在線段上有一個(gè)動(dòng)點(diǎn),滿足平面,求實(shí)數(shù)的值;

(2)已知的交點(diǎn)為,若,且平面,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形沿對(duì)角線折疊,使平面平面, 若直線平面,

求證:直線平面;

求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)若是函數(shù)的導(dǎo)函數(shù)的零點(diǎn),求的單調(diào)區(qū)間;

(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,,平面平面,點(diǎn)為棱的中點(diǎn).

(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說(shuō)明理由;

(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線與平面所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案