17.某醫(yī)學(xué)科研所對(duì)人體脂肪含量與年齡這兩個(gè)變量研究得到一組隨機(jī)樣本數(shù)據(jù),運(yùn)用Excel軟件計(jì)算得$\widehat{y}$=0.577x-0.448(x為人的年齡,y(單位:%)為人體脂肪含量).對(duì)年齡為37歲的人來(lái)說(shuō),下面說(shuō)法正確的是(  )
A.年齡為37歲的人體內(nèi)脂肪含量都為20.90%
B.年齡為37歲的人體內(nèi)脂肪含量為21.01%
C.年齡為37歲的人群中的大部分人的體內(nèi)脂肪含量為20.90%
D.年齡為37歲的大部分的人體內(nèi)脂肪含量為31.50%

分析 將x=37帶入$\widehat{y}$=0.577x-0.448計(jì)算即可得答案.

解答 解:由題意,$\widehat{y}$=0.577x-0.448,
當(dāng)x=37時(shí),可得y=20.9%.
∴認(rèn)為年齡為37歲的人群中的大部分人的體內(nèi)脂肪含量為20.90%.
故選C.

點(diǎn)評(píng) 本題考查線性回歸方程的意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知拋物線C:y2=4x的焦點(diǎn)為F,設(shè)過(guò)拋物線上一點(diǎn)P處的切線為l1,過(guò)點(diǎn)F且垂直于PF的直線為l2,則l1與l2交點(diǎn)Q的橫坐標(biāo)為( 。
A.-$\frac{3}{4}$B.-1C.-$\frac{4}{3}$D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)是二次函數(shù),不等式f(x)<0的解集為(0,5),且f(x)在[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在自然數(shù)m,使得方程$f(x)+\frac{37}{x}=0$在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等的實(shí)根?若存在,求出m的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知a,b都是實(shí)數(shù),且a>0,b>0,則“a>b”是“a+lna>b+lnb”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.直線x+$\sqrt{3}$y-2=0的傾斜角為( 。
A.30°B.120°C.150°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)曲線C1:$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}$(其中θ為參數(shù)).曲線${C_2}:ρcos(θ-\frac{π}{4})=\frac{{\sqrt{2}}}{4}$
(Ⅰ)將曲線C1和C2,化為直角坐標(biāo)系下的方程:
(Ⅱ)設(shè)C1和C2的交點(diǎn)分別為A,B.求線段AB的中垂線的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)z=$\frac{(1-4i)(1+i)+2+4i}{3+4i}$.
①求|z|;
②若$\frac{{|{\overline z}|+mi}}{1-i}=\sqrt{2}$i,m∈R,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)Z為純虛數(shù),若(z+2)2-8i也是純虛數(shù),則Z的虛部為(  )
A.2B.-2C.-2iD.2或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.菜農(nóng)定期使用低害殺蟲農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水x(單位:千克) 清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克) 的統(tǒng)計(jì)表:
x12345
 y5854392910
(1)在下面的坐標(biāo)系中,描出散點(diǎn)圖,并判斷變量x與y的相關(guān)性;
(2)若用解析式$\widehaty=c{x^2}+d$作為蔬菜農(nóng)藥殘量$\widehaty$與用水量x的回歸方程,令ω=x2,計(jì)算平均值$\overlineω$與$\overline y$,完成以下表格(填在答題卡中),求出$\widehaty$與x的回歸方程.(c,d精確到0.1)
ω1491625
y5854392910
${ω_i}-\overlineω$-10-7-2514
${y_i}-\overline y$20161-28
(3)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時(shí)對(duì)人體無(wú)害,為了放心食用該蔬菜,請(qǐng)
估計(jì)需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù)$\sqrt{5}≈2.236$)
(附:線性回歸方程$\widehaty=bx+a$中系數(shù)計(jì)算公式分別為;$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

同步練習(xí)冊(cè)答案