【題目】如圖,在四棱錐中,底面ABCD為矩形,O,E分別為AD,PB的中點(diǎn),平面平面ABCD,,.
(1)求證:平面PCD;
(2)求證:平面PCD;
(3)求二面角的余弦值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1) 取PC的中點(diǎn)G,連接EG,DG.再證明即可.
(2)分別證明與即可.
(3)以O為原點(diǎn),建立空間直角坐標(biāo)系,利用二面角的向量方法求解即可.
(1)證明:取PC的中點(diǎn)G,連接EG,DG.
∵E,G分別為PB,PC的中點(diǎn),
∴,
∵四邊形ABCD為矩形,且O為AD的中點(diǎn),
∴,
∴,
∴四邊形ODGE為平行四邊形,
∴.
又因?yàn)?/span>平面PCD,平面PCD,
∴平面PCD,.
(2)∵底面ABCD為矩形,
∴,又平面平面ABCD,
∴平面PAD,∴,
∵,,
∴,
∴,又
∴平面PCD.
(3)解:取BC的中點(diǎn)F,連接OF,OP,則,,.
以O為原點(diǎn),OA的方向?yàn)?/span>x軸正方向,建立如圖所示的空間直角坐標(biāo)系,
則,,,
平面PAD的一個法向量,,,
設(shè)平面PBD的法向量,
則,所以,可取,
所以,
結(jié)合圖形可知二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱中,、點(diǎn)為中點(diǎn),點(diǎn)為四邊形內(nèi)(包含邊界)的動點(diǎn)則以下結(jié)論正確的是( )
A.
B.若平面,則動點(diǎn)的軌跡的長度等于
C.異面直線與,所成角的余弦值為
D.若點(diǎn)到平面的距離等于,則動點(diǎn)的軌跡為拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的箱子中裝有大小形狀相同的5個小球,其中2個白球標(biāo)號分別為,,3個紅球標(biāo)號分別為,,,現(xiàn)從箱子中隨機(jī)地一次取出兩個球.
(1)求取出的兩個球都是白球的概率;
(2)求取出的兩個球至少有一個是白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是平行四邊形,,側(cè)面底面,, ,,分別為,的中點(diǎn),過的平面與面交于,兩點(diǎn).
(1)求證:;
(2)求證:平面平面;
(3)設(shè),當(dāng)為何值時四棱錐的體積等于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(﹣2,0),B ,M(x,y)是曲線C上的動點(diǎn),且直線AM與BM的斜率之積等于.
(1)求曲線C方程;
(2)過D(2,0)的直線l(l與x軸不垂直)與曲線C交于E,F兩點(diǎn),點(diǎn)F關(guān)于x軸的對稱點(diǎn)為F′,直線EF′與x軸交于點(diǎn)P,求△PEF的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】無窮等差數(shù)列的各項(xiàng)均為整數(shù),首項(xiàng)為,公差為,是其前項(xiàng)和,31521是其中的三項(xiàng) ,給出下列命題:
①對任意滿足條件的,存在,使得99一定是數(shù)列中的一項(xiàng);
②對任意滿足條件的,存在,使得30一定是數(shù)列中的一項(xiàng);
③存在滿足條件的數(shù)列,使得對任意的,成立;
其中正確命題的序號為( ).
A.①B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】司機(jī)在開機(jī)動車時使用手機(jī)是違法行為,會存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機(jī)開車時使用手機(jī)的情況,交警部門調(diào)查了名機(jī)動車司機(jī),得到以下統(tǒng)計(jì):在名男性司機(jī)中,開車時使用手機(jī)的有人,開車時不使用手機(jī)的有人;在名女性司機(jī)中,開車時使用手機(jī)的有人,開車時不使用手機(jī)的有人.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為開車時使用手機(jī)與司機(jī)的性別有關(guān);
開車時使用手機(jī) | 開車時不使用手機(jī) | 合計(jì) | |
男性司機(jī)人數(shù) | |||
女性司機(jī)人數(shù) | |||
合計(jì) |
(2)以上述的樣本數(shù)據(jù)來估計(jì)總體,現(xiàn)交警部門從道路上行駛的大量機(jī)動車中隨機(jī)抽檢3輛,記這3輛車中司機(jī)為男性且開車時使用手機(jī)的車輛數(shù)為,若每次抽檢的結(jié)果都相互獨(dú)立,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
參考數(shù)據(jù):
參考公式
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于一個向量組,令,如果存在,使得,那么稱是該向量組的“長向量”
(1)若是向量組的“長向量”,且,求實(shí)數(shù)的取值范圍;
(2)已知,,均是向量組的“長向量”,試探究,,的等量關(guān)系并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com