【題目】某省級示范高中高三年級對考試的評價指標中,有“難度系數(shù)”“區(qū)分度”和“綜合”三個指標,其中,難度系數(shù),區(qū)分度,綜合指標.以下是高三年級 6 次考試的統(tǒng)計數(shù)據(jù):
i | 1 | 2 | 3 | 4 | 5 | 6 |
難度系數(shù) xi | 0.66 | 0.72 | 0.73 | 0.77 | 0.78 | 0.84 |
區(qū)分度 yi | 0.19 | 0.24 | 0.23 | 0.23 | 0.21 | 0.16 |
(I) 計算相關(guān)系數(shù),若,則認為與的相關(guān)性強;通過計算相關(guān)系數(shù) ,能否認為與的相關(guān)性很強(結(jié)果保留兩位小數(shù))?
(II) 根據(jù)經(jīng)驗,當時,區(qū)分度與難度系數(shù)的相關(guān)性較強,從以上數(shù)據(jù)中剔除(0.7,0.8)以外的 值,即.
(i) 寫出剩下 4 組數(shù)據(jù)的線性回歸方程(保留兩位小數(shù));
(ii) 假設(shè)當時, 與的關(guān)系依從(i)中的回歸方程,當 為何值時,綜合指標的值最大?
參考數(shù)據(jù):
參考公式:
相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計公式為
科目:高中數(shù)學 來源: 題型:
【題目】已知袋中裝有大小相同的2個白球、2個紅球和1個黃球.一項游戲規(guī)定:每個白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個球,將3個球?qū)姆种迪嗉雍蠓Q為該局的得分,計算完得分后將球放回袋中.當出現(xiàn)第局得分()的情況就算游戲過關(guān),同時游戲結(jié)束,若四局過后仍未過關(guān),游戲也結(jié)束.
(1)求在一局游戲中得3分的概率;
(2)求游戲結(jié)束時局數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若方程 所表示的曲線為C,給出下列四個命題:
①若C為橢圓,則;
②若C為雙曲線,則或;
③曲線C不可能是圓;
④若,曲線C為橢圓,且焦點坐標為;
⑤若,曲線C為雙曲線,且虛半軸長為.
其中真命題的序號為____________.(把所有正確命題的序號都填在橫線上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C:x2-y2=1及直線l:y=kx-1.
(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;
(2)若l與C交于A,B兩點,O為坐標原點,且△AOB的面積為,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤為萬元(),剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則調(diào)整員工從事第三產(chǎn)業(yè)的人數(shù)應在什么范圍?
(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若,在上恒成立,求的取值范圍;
(2)設(shè)數(shù)列,為數(shù)列的前項和,求證:;
(3)當時,設(shè)函數(shù)的圖象與函數(shù)的圖象交于點,,過線段的中點作軸的垂線分別交,于點,問是否存在點,使在處的切線與在處的切線平行?若存在,求出的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)調(diào)查顯示,某高校萬男生的身高服從正態(tài)分布,現(xiàn)從該校男生中隨機抽取名進行身高測量,將測量結(jié)果分成組: , , , , , ,并繪制成如圖所示的頻率分布直方圖.
(Ⅰ)求這名男生中身高在(含)以上的人數(shù);
(Ⅱ)從這名男生中身高在以上(含)的人中任意抽取人,該人中身高排名(從高到低)在全校前名的人數(shù)記為,求的數(shù)學期望.
(附:參考數(shù)據(jù):若服從正態(tài)分布,則, , .)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com