【題目】某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計厚度,單位:米),按計劃容積為72π立方米,且h≥2r,假設其建造費用僅與表面積有關(圓柱底部不計),已知圓柱部分每平方米的費用為2千元,半球部分每平方米4千元,設該容器的建造費用為y千元. (Ⅰ)求y關于r的函數(shù)關系,并求其定義域;
(Ⅱ)求建造費用最小時的r.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}滿足:a1=1,an+1+(﹣1)nan=2n﹣1.
(1)求a2 , a4 , a6;
(2)設bn=a2n , 求數(shù)列{bn}的通項公式;
(3)設Sn為數(shù)列{an}的前n項和,求S2018 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)= ,有下列5個結論: ①任取x1 , x2∈[0,+∞),都有|f(x1)﹣f(x2)|≤2;
②函數(shù)y=f(x)在區(qū)間[4,5]上單調(diào)遞增;
③f(x)=2kf(x+2k)(k∈N+),對一切x∈[0,+∞)恒成立;
④函數(shù)y=f(x)﹣ln(x﹣1)有3個零點;
⑤若關于x的方程f(x)=m(m<0)有且只有兩個不同實根x1 , x2 , 則x1+x2=3.
則其中所有正確結論的序號是 . (請寫出全部正確結論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ∥ ,求| ﹣ |
(2)若 與 夾角為銳角,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生數(shù)學競賽成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100],則該次數(shù)學成績在[50,60)內(nèi)的人數(shù)為( )
A.20
B.15
C.10
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(a+1)x+b.
(1)若f(x)<0的解集為(﹣1,3),求a,b的值;
(2)當a=1時,若對任意x∈R,f(x)≥0恒成立,求實數(shù)b的取值范圍;
(3)當b=a時,解關于x的不等式f(x)<0(結果用a表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP= .
(Ⅰ)求證:AB⊥PC;
(Ⅱ)求點D到平面PAC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義域為D的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時滿足: ①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個“和諧區(qū)間”.
(2)求證:函數(shù) 不存在“和諧區(qū)間”.
(3)已知:函數(shù) (a∈R,a≠0)有“和諧區(qū)間”[m,n],當a變化時,求出n﹣m的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com