某廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本為C(x).當年產量不足80千件時,C(x)=x2+10x(萬元);當年產量不小于80千件時,C(x)=51x+-1 450(萬元),每件商品售價為0.05萬元,通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤L(萬元)關于年產量x(千件)的函數解析式;
(2)當年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
科目:高中數學 來源: 題型:解答題
某工廠的固定成本為3萬元,該工廠每生產100臺某產品的生產成本為1萬元,設生產該產品x(百臺),其總成本為g(x)萬元(總成本=固定成本+生產成本),并且銷售收人r(x)滿足假定該產品產銷平衡,根據上述統計規(guī)律求:
(1)要使工廠有盈利,產品數量x應控制在什么范圍?
(2)工廠生產多少臺產品時盈利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出場單價就降低0.02元,根據市場調查,銷售商一次訂購量不會超過600件.
(1)設一次訂購x件,服裝的實際出廠單價為p元,寫出函數p=f(x)的表達式;
(2)當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x2+bx+c(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當x≥0時,f(x)≤(x+c)2;
(2)若對滿足題設條件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知二次函數f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且對任意實數x均有f(x)≥0成立.
(1)求F(x)的表達式;
(2)當x∈[-2,2]時,g(x)=f(x)-kx是單調函數,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某鎮(zhèn)政府為了更好地服務于農民,派調查組到某村考察.據了解,該村有100戶農民,且都從事蔬菜種植,平均每戶的年收入為3萬元.為了調整產業(yè)結構,該鎮(zhèn)政府決定動員部分農民從事蔬菜加工.據估計,若能動員x(x>0)戶農民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農民平均每戶的年收入有望提高2x%,而從事蔬菜加工的農民平均每戶的年收入將為3 (a>0)萬元.
(1)在動員x戶農民從事蔬菜加工后,要使從事蔬菜種植的農民的總年收入不低于動員前從事蔬菜種植的農民的總年收入,求x的取值范圍;
(2)在(1)的條件下,要使這100戶農民中從事蔬菜加工的農民的總年收入始終不高于從事蔬菜種植的農民的總年收入,求a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某投資公司計劃投資A,B兩種金融產品,根據市場調查與預測,A產品的利潤y1與投資金額x的函數關系為y1=18-,B產品的利潤y2與投資金額x的函數關系為y2=(注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產品中,其中x萬元資金投入A產品,試把A,B兩種產品利潤總和表示為x的函數,并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
方便、快捷、實惠的電動車是很多人的出行工具?墒,隨著電動車的普及,它的安全性也越來越受到人們關注。為了出行更安全,交通部門限制電動車的行駛速度為24km/h。若某款電動車正常行駛遇到緊急情況時,緊急剎車時行駛的路程S(單位:m)和時間t(單位:s)的關系為:。
(Ⅰ)求從開始緊急剎車至電動車完全停止所經過的時間;
(Ⅱ)求該款車正常行駛的速度是否在限行范圍內?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com