【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c且滿足csinA=acosC
(1)求角C的大。
(2)求 的取值范圍.
【答案】
(1)解:由正弦定理化簡已知等式得:sinCsinA=sinAcosC,
∵A為三角形內(nèi)角,∴sinA≠0,
∴sinC=cosC,即tanC=1,
∴C=
(2)解: sinA﹣cos(B+C)= sinA+cosA=2sin(A+ ),
∵0<A< ,
∴ <A+ < ,
∵sin =sin =sin( ﹣ )=sin cos ﹣cos sin = ,
∴ <sin(A+ )<1,即 <2sin(A+ )<2,
則 sinA﹣cos(B+C)的取值范圍是( ,2]
【解析】(1)已知等式利用正弦定理化簡,根據(jù)sinA不為0求出tanC的值,利用特殊角的三角函數(shù)值即可求出C的度數(shù);(2)原式第二項(xiàng)利用誘導(dǎo)公式化簡,提取2變形后,利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),由A的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的值域即可確定出范圍.
【考點(diǎn)精析】關(guān)于本題考查的兩角和與差的正弦公式和正弦定理的定義,需要了解兩角和與差的正弦公式:;正弦定理:才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)和,若存在常數(shù),對于任意,不等式都成立,則稱直線是函數(shù)的分界線. 已知函數(shù)為自然對數(shù)的底, 為常數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),試探究函數(shù)與函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) 的最小正周期為π,若其圖象向左平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象( )
A.關(guān)于點(diǎn) 對稱
B.關(guān)于點(diǎn) 對稱
C.關(guān)于直線 對稱
D.關(guān)于直線 對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點(diǎn)在底面內(nèi)的射影在線段上,且, , 為的中點(diǎn), 在線段上,且.
(1)當(dāng)時(shí),證明:平面平面;
(2)當(dāng)時(shí),求平面與平面所成的二面角的正弦值及四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0)
(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;
(2)當(dāng)a>1時(shí),討論f(x)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣6x﹣8y﹣5t=0,直線l:x+3y+15=0.
(1)若直線l被圓C截得的弦長為 ,求實(shí)數(shù)t的值;
(2)當(dāng)t=1時(shí),由直線l上的動點(diǎn)P引圓C的兩條切線,若切點(diǎn)分別為A,B,則在直線AB上是否存在一個(gè)定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知: 、 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 ﹣ 垂直,求 與 的夾角θ
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com