(10分) 已知數(shù)列{an}的前n項(xiàng)和Sn=10n-n2,(n∈N*).
(1)求a1和an;
(2)記bn=|an|,求數(shù)列{bn}的前n項(xiàng)和.
(1) an=-2n+11(n∈N*).(2) Tn
本題考查數(shù)列前n項(xiàng)和與通項(xiàng)公式的應(yīng)用,考查轉(zhuǎn)化思想與計(jì)算能力
由Sn=10n-n2知Sn是關(guān)于n的無常數(shù)項(xiàng)的二次函數(shù)(n∈N*),可知{an}為等差數(shù)列,求出an,然后再判斷哪些項(xiàng)為正,哪些項(xiàng)為負(fù),然后求解Tn
(1)∵Sn=10n-n2,∴a1=S1=10-1=9.
∵Sn=10n-n2,當(dāng)n≥2,n∈N*時(shí),
Sn-1=10(n-1)-(n-1)2=10n-n2+2n-11,
∴an=Sn-Sn-1=(10n-n2)-(10n-n2+2n-11)
=-2n+11.
又n=1時(shí),a1=9=-2×1+11,符合上式.
則數(shù)列{an}的通項(xiàng)公式為an=-2n+11(n∈N*).
(2)∵an=-2n+11,∴bn=|an|=
設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn
n≤5時(shí),Tn=10n-n2;
n>5時(shí)Tn=T5=25+=25+(n-5)2=n2-10n+50,
∴數(shù)列{bn}的前n項(xiàng)和Tn
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列{an}的前n項(xiàng)和,那么它的通項(xiàng)公式為an=_________ 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在等比數(shù)列中,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列的公比大于,且,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列為等差數(shù)列,且 求
(1)求數(shù)列的通項(xiàng)式;
( 2 )求數(shù)列的前n項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知數(shù)列的前項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)已知數(shù)列的通項(xiàng)公式,記,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若{an}是等差數(shù)列,首項(xiàng)a1>0,a4+a5>0,a4·a5<0,則使前n項(xiàng)和
﹥0成立的最大自然數(shù)n的值為.
A.4B.8C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)不等式組
表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231545447478.png" style="vertical-align:middle;" />表示區(qū)域Dn中整點(diǎn)的個(gè)數(shù)(其中整點(diǎn)是指橫、縱坐標(biāo)都是整數(shù)的點(diǎn)),則=(    )
A.1012B.2012C.3021D.4001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列的通項(xiàng)公式是,將數(shù)列中各項(xiàng)進(jìn)行如下分組:第1組1個(gè)數(shù)(),第2 組2個(gè)數(shù)()第3組3個(gè)數(shù)(),依次類推,……,則第16組的第10個(gè)數(shù)是  __________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列中,
A.31B.32C.33D.34

查看答案和解析>>

同步練習(xí)冊(cè)答案