【題目】已知,
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式恒成立,求的取值范圍.
【答案】(1) 函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減;(2) .
【解析】試題分析:
(1)求出導(dǎo)數(shù),在定義域內(nèi),解不等式得增區(qū)間,解不等式得減區(qū)間;(2)題設(shè)不等式可變形為,分別設(shè), ,求出它們的導(dǎo)數(shù),通過解相應(yīng)不等式得出單調(diào)區(qū)間,求出最值,恰好是時, 取最小值, 最最大值,因此要使原不等式恒成立,只要即可.
試題解析:
(1)由得:
由于定義域為,
所以由得:
所以由得:
即得函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減。
(2)由不等式恒成立,
即恒成立
設(shè)得:
因為它們的定義域,所以易得:
函數(shù)在上單調(diào)遞減, 上單調(diào)遞增;
函數(shù)在上單調(diào)遞增, 上單調(diào)遞減;
這兩個函數(shù)在處, 有最小值, 有最大值,
所以要使不等式恒成立,
則只需滿足,即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線的焦點, 若點在上,且.
(1)求的值;
(2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的一段圖象如圖所示
(1)求f(x)的解析式;
(2)把f(x)的圖象向左至少平移多少個單位,才能使得到的圖象對應(yīng)的函數(shù)為偶函數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中點,M是CE的中點,N點在PB上,且4PN=PB.
(Ⅰ)證明:平面PCE⊥平面PAB;
(Ⅱ)證明:MN∥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, , 為中點, 于(不同于點),延長交于,將沿折起,得到三棱錐,如圖所示.
(Ⅰ)若是的中點,求證:直線平面.
(Ⅱ)求證: .
(Ⅲ)若平面平面,試判斷直線與直線能否垂直?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面
底面,且, 、分別為、的中點.
(1)求證: 平面;
(2)求證:面平面;
(3)在線段上是否存在點,使得二面角的余弦值為?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國內(nèi)某知名連鎖店分店開張營業(yè)期間,在固定的時間段內(nèi)消費達到一定標(biāo)準(zhǔn)的顧客可進行一次抽獎活動,隨著抽獎活動的有效展開,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎活動的人數(shù)進行統(tǒng)計,表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
經(jīng)過進一步的統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出與的線性回歸方程;
(2)若該分店此次抽獎活動自開業(yè)始,持續(xù)10天,參加抽獎的每位顧客抽到一等獎(價值200元獎品)的概率為,抽到二等獎(價值100元獎品)的概率為,抽到三等獎(價值10元獎品)的概率為,試估計該分店在此次抽獎活動結(jié)束時送出多少元獎品?
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點為極點, 軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線的參數(shù)方程為,( 為參數(shù), ),曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于, 兩點,當(dāng)變化時,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com