已知函數(shù),函數(shù)f(x)在處取得極值.
(1)求實(shí)數(shù)a的值;
(2)若b≤2,t<0,函數(shù)f(x)在[t,e](e為自然對(duì)數(shù)的底數(shù))上的最大值為2,求實(shí)數(shù)t的取值范圍;
(3)對(duì)任意給定的正實(shí)數(shù)b,曲線y=f(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?
【答案】分析:(1)由題意,x<1時(shí),f(x)=ax3+x2,求導(dǎo)數(shù),利用函數(shù)f(x)在處取得極值,可得f′()=0,從而可求a的值;
(2)由題意,x=e時(shí),blne=b≤2,利用b≤2,t<0,函數(shù)f(x)在[t,e](e為自然對(duì)數(shù)的底數(shù))上的最大值為2,可得x=t時(shí),函數(shù)取得最大值2,由此可求實(shí)數(shù)t的取值范圍;
(3)假設(shè)曲線y=f(x)上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在y軸兩側(cè).設(shè)P(t,f(t))(t>0),則Q(-t,t3+t2),顯然t≠1.由此入手能得到對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上.
解答:解:(1)由題意,x<1時(shí),f(x)=ax3+x2,則f′(x)=3ax2+2x,
∵函數(shù)f(x)在處取得極值,∴f′()=a+=0,解得a=-1;
(2)由題意,x=e時(shí),blne=b≤2
∵b≤2,t<0,函數(shù)f(x)在[t,e](e為自然對(duì)數(shù)的底數(shù))上的最大值為2,
∴x=t時(shí),函數(shù)取得最大值2,即-t3+t2=2,
∴t=-1;
(3)假設(shè)曲線y=f(x)上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在y軸兩側(cè).
不妨設(shè)P(t,f(t))(t>0),則Q(-t,t3+t2),顯然t≠1
∵△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,∴=0即-t2+f(t)(t3+t2)=0(*)
若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若0<t<1,則f(t)=-t3+t2代入(*)式得:-t2+(-t3+t2)(t3+t2)=0
即t4-t2+1=0,而此方程無解,因此t>1.此時(shí)f(t)=blnt,
代入(*)式得:-t2+(blnt)(t3+t2)=0即=(t+1)lnt(**)
令h(x)=(x+1)lnx(x≥1),則h′(x)=lnx++1>0
∴h(x)在[1,+∞)上單調(diào)遞增,∵t>1,∴h(t)>h(1)=0,∴h(t)的取值范圍是(0,+∞).
∴對(duì)于b>0,方程(**)總有解,即方程(*)總有解.
因此,對(duì)任意給定的正實(shí)數(shù)b,曲線y=f(x)上存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的性質(zhì)和應(yīng)用,考查函數(shù)的最值,考查學(xué)生分析解決問題的能力,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三次函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=3x2-3ax,f(0)=b,a、b為實(shí)數(shù).
(1)若曲線y=f(x)在點(diǎn)(a+1,f(a+1))處切線的斜率為12,求a的值;
(2)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且1<a<2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx-1
,g(x)=(x+1)3
(1)作出函數(shù)f(x)的圖象;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間,并利用定義證明函數(shù)f(x)在區(qū)間(-3,+∞)上的單調(diào)性;
(3)判斷f(x)-g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=[ax2-(a+1)x+1]ex,a∈R.
(Ⅰ)若a=1,求函數(shù)y=f(x)在x=2處的切線方程;
(Ⅱ)若a∈[0,1],設(shè)h(x)=f(x)-f'(x)(其中f'(x)是函數(shù)f(x)的導(dǎo)函數(shù)),求函數(shù)h(x)在區(qū)間[0,1]的最大值;
(Ⅲ)若a=1,試判斷當(dāng)x>1時(shí),方程f(x)=x實(shí)數(shù)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx,g(x)=
1
2
ax2+3x.
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點(diǎn)P、Q,且曲線y=f(x)和y=g(x)在點(diǎn)P、Q處的切線平行,若方程
1
2
f(x2+1)+g(x)=3x+k有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(xiàn)(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)、g(x),下列說法正確的是( 。
A、f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)B、f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)C、f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)D、f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案