【題目】已知二次函數(shù)f(x)=x2+bx+c有兩個零點1和﹣1.
(1)求f(x)的解析式;
(2)設g(x),試判斷函數(shù)g(x)在區(qū)間(﹣1,1)上的單調(diào)性并用定義證明;
(3)由(2)函數(shù)g(x)在區(qū)間(﹣1,1)上,若實數(shù)t滿足g(t﹣1)﹣g(﹣t)>0,求t的取值范圍.
【答案】(1)f(x)=x2﹣1;(2)見解析;(3)(0,).
【解析】
(1)由題意可得﹣1和1是方程x2+bx+c=0的兩根,運用韋達定理可得b,c,進而得到函數(shù)f(x)的解析式;
(2)函數(shù)g(x)在區(qū)間(﹣1,1)上是減函數(shù).運用單調(diào)性的定義,注意取值、作差和變形、定符號以及下結(jié)論等;
(3)由題意結(jié)合(2)的單調(diào)性可得﹣1<t﹣1<﹣t<1,解不等式即可得到所求范圍.
(1)由題意得﹣1和1是方程x2+bx+c=0的兩根,
所以﹣1+1=﹣b,﹣1×1=c,
解得b=0,c=﹣1,
所以f(x)=x2﹣1;
(2)函數(shù)g(x)在區(qū)間(﹣1,1)上是減函數(shù).
證明如下:設﹣1<x1<x2<1,則g(x1)﹣g(x2),
∵﹣1<x1<x2<1,
∴x2﹣x1>0,x1+1>0,x2+1>0,
可得g(x1)﹣g(x2)>0,即g(x1)>g(x2),
則函數(shù)g(x)在區(qū)間(﹣1,1)上是減函數(shù);
(3)函數(shù)g(x)在區(qū)間(﹣1,1)上,
若實數(shù)t滿足g(t﹣1)﹣g(﹣t)>0,
即有g(t﹣1)>g(﹣t),
又由(2)函數(shù)g(x)在區(qū)間(﹣1,1)上是遞減函數(shù),
可得﹣1<t﹣1<﹣t<1,
解得0<t.則實數(shù)t的取值范圍為(0,).
科目:高中數(shù)學 來源: 題型:
【題目】下列有關線性回歸分析的四個命題:
①線性回歸直線必過樣本數(shù)據(jù)的中心點();
②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;
③當相關性系數(shù)時,兩個變量正相關;
④如果兩個變量的相關性越強,則相關性系數(shù)就越接近于.
其中真命題的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設袋子中裝有a個紅球,b個黃球,c個藍球,且規(guī)定:取出一個紅球得1分,取出一個黃球2分,取出藍球得3分.
(1)當a=3,b=2,c=1時,從該袋子中任。ㄓ蟹呕兀颐壳蛉〉降臋C會均等)2個球,記隨機變量ξ為取出此2球所得分數(shù)之和.求ξ分布列;
(2)從該袋子中任。ㄇ颐壳蛉〉降臋C會均等)1個球,記隨機變量η為取出此球所得分數(shù).若 ,求a:b:c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x(1+a|x|).設關于x的不等式f(x+a)<f(x)的解集為A,若 ,則實數(shù)a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x<0時,f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象如圖所示,
(1)畫出函數(shù)f(x),x∈R剩余部分的圖象,并根據(jù)圖象寫出函數(shù)f(x),x∈R的單調(diào)區(qū)間;(只寫答案)
(2)求函數(shù)f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x<0時,f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象如圖所示,
(1)畫出函數(shù)f(x),x∈R剩余部分的圖象,并根據(jù)圖象寫出函數(shù)f(x),x∈R的單調(diào)區(qū)間;(只寫答案)
(2)求函數(shù)f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒中裝有編號分別為的四個形狀大小完全相同的小球.
(1)從盒中任取兩球,求取出的球的編號之和大于的概率.
(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號,求的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)滿足.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;
(3)若函數(shù),是否存在實數(shù),使函數(shù)在上的值域為?若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某港口要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時,輪船位于港口北偏西且與該港口相距20海里的處,并以30海里/時的航行速度沿正東方向勻速行駛,假設該小船沿直線方向以海里/時的航行速度勻速行駛,經(jīng)過小時與輪船相遇.
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?
(2)假設小艇的最高航行速度只能達到30海里/時,試設計航行方案(即確定航行方向與航行速度的大小),使得小艇能以最短時間與輪船相遇,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com