命題P:?α∈R,sin(π-α)=cosα;
命題q:?m>0,雙曲線數(shù)學(xué)公式-數(shù)學(xué)公式=1的離心率為數(shù)學(xué)公式
則下面結(jié)論正確的是


  1. A.
    P是假命題
  2. B.
    ¬q是真命題
  3. C.
    p∧q是假命題
  4. D.
    p∨q是真命題
D
分析:由于可判斷命題p為真命題,而命題q為真命題,再根據(jù)復(fù)合命題的真假判定,一一驗(yàn)證選項(xiàng)即可得正確結(jié)果.
解答:當(dāng)時,Rsin(π-α)=cosα,故命題p為真命題,
∵雙曲線-=1中a=b=|m|=m,
∴c==m
∴e==,故命題q為真命題.
∴¬p為假命題,¬q是假命題,p∨q是真命題;
故選D.
點(diǎn)評:本題主要考查了命題真假判斷的應(yīng)用,簡單復(fù)合命題的真假判斷,屬于基礎(chǔ)試題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點(diǎn);
②“-
1
2
<x<0
”是“2x2-5x-3<0”必要不充分條件;
③“若xy=0,則x、y中至少有一個為0”的否命題是真命題.;
④若p是q的充分條件,r是q的必要條件,r是s的充要條件,則s是p的必要條件;
其中是真命題的有:
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)一模)已知函數(shù):
①f(x)=-x2+2x,
②f(x)=cos(
π
2
-
πx
2
),
③f(x)=|x-1|
1
2
.則以下四個命題對已知的三個函數(shù)都能成立的是( 。
命題p:f(x)是奇函數(shù);       
命題q:f(x+1)在(0,1)上是增函數(shù);
命題r:f(
1
2
1
2
;            
命題s:f(x)的圖象關(guān)于直線x=1對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:集合A={x|2x2-3x+1≤0,x∈R}}
命題q:集合B={x|x2-(2a+1)x+a(a+1)≤0,x∈R,a∈R}
命題s:集合C={m|方程x2+(m-3)x+m=0的兩個根一根大于1,一根小于0}
(1)若A∩B=[
45
,1
],實(shí)數(shù)a的值;
(2)若q是?s的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù):
①f(x)=-x2+2x,
②f(x)=cos(數(shù)學(xué)公式),
③f(x)=數(shù)學(xué)公式.則以下四個命題對已知的三個函數(shù)都能成立的是
命題p:f(x)是奇函數(shù);   
命題q:f(x+1)在(0,1)上是增函數(shù);
命題r:f(數(shù)學(xué)公式數(shù)學(xué)公式;      
命題s:f(x)的圖象關(guān)于直線x=1對稱.


  1. A.
    命題p、q
  2. B.
    命題q、s
  3. C.
    命題r、s
  4. D.
    命題p、r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林省吉林市09-10學(xué)年高三上學(xué)期期末教學(xué)質(zhì)量檢測(數(shù)學(xué)理) 題型:選擇題

 用p,qr,s表示命題,下列選項(xiàng)中滿足:“若p是真命題,則q也是真命題”的是

A.prs的必要條件 q      B.p  q               

C. p  q              D. p q

 

查看答案和解析>>

同步練習(xí)冊答案