【題目】已知函數(shù).
(1)求曲線與直線垂直的切線方程;
(2)求的單調(diào)遞減區(qū)間;
(3)若存在,使函數(shù)成立,求實數(shù)的取值范圍.
【答案】(1);(2)減區(qū)間為和;(3).
【解析】
試題分析:(1)求出導(dǎo)數(shù),令,求出切點坐標(biāo),可得切線方程;(2)令解出的單調(diào)遞減區(qū)間;(3)由已知得,分離常數(shù),存在使函數(shù)成立,使即可,對進行求導(dǎo),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性得到其最小值.
試題解析:(1)由已知,·······2分
設(shè)切點坐標(biāo)為,令,解得,所以,因此切線方程為,即;·······4分
(2)函數(shù)的定義域為,
,由,解得或,
所以函數(shù)的單調(diào)遞減區(qū)間為和.·······8分
(3)因為,
由已知,若存在使函數(shù)成立,
則只需滿足當(dāng)時,即可.·······9分
又,
則,·······10分
①若,則在上恒成立,
所以在上單調(diào)遞增,
,
∴,又∵,∴.·······13分
②若,則在上單調(diào)遞減,在上單調(diào)遞增,
所以在上的最小值是,·······15分
又∵,而,所以一定滿足條件,
綜上所述,的取值范圍是.·······16分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26.{an}的前n項和為Sn .
(1)求an及Sn;
(2)令bn=﹣ (n∈N*),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M(﹣2,﹣3),N(3,0),直線l過點(﹣1,2)且與線段MN相交,則直線l的斜率k的取值范圍是( )
A.或k≥5
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機抽取一人,估計其分數(shù)小于70的概率;
(Ⅱ)已知樣本中分數(shù)小于40的學(xué)生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學(xué)生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機抽取一人,估計其分數(shù)小于70的概率;
(Ⅱ)已知樣本中分數(shù)小于40的學(xué)生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C對邊分別是a,b,c.且S△ABC=30,cosA= .
(1)求 的值;
(2)若c﹣b=1,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動直線l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9.
(1)求證:無論m為何值,直線l與圓C總相交.
(2)求直線l被圓C所截得的弦長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點且與圓相切,記動圓圓心的軌跡為曲線.
(1)求曲線的方程;
(2)過點且斜率不為零的直線交曲線于, 兩點,在軸上是否存在定點,使得直線的斜率之積為非零常數(shù)?若存在,求出定點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com