精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=3x2+2x+1,若數學公式(a>0)成立,則a=________.


分析:先求出f(x)在[-1,1]上的定積分,再建立等量關系,求出參數a即可.
解答:由∫-11f(x)dx=∫-11(3x2+2x+1)dx
=(x3+x2+x)|-11=4=2f(a),
得f(a)=3a2+2a+1=2,
解得a=-1或
∵a>0.∴a=
故答案為:
點評:本題主要考查了微積分基本定理、定積分的運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=3•2x-1,則當x∈N時,數列{f(n+1)-f(n)}(  )
A、是等比數列B、是等差數列C、從第2項起是等比數列D、是常數列

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3-x
+
1
x+2
的定義域為集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有滿足條件的m的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3-x
+
1
x+2
的定義域為集合A,B={x|x<a}.
(1)若A⊆B,求實數a的取值范圍;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3-ax
a-1
(a≠1)在區(qū)間(0,4]上是增函數,則實數a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=3-2log2x,g(x)=log2x.
(1)當x∈[1,4]時,求函數h(x)=[f(x)+1]•g(x)的值域;
(2)如果對任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案