【題目】2018年上海國(guó)際青少年足球邀請(qǐng)賽將在6月下旬舉行.一體育機(jī)構(gòu)對(duì)某高中一年級(jí)750名男生,600名女生采用分層抽樣的方法抽取45名學(xué)生對(duì)足球進(jìn)行興趣調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:

1:男生

結(jié)果

有興趣

無(wú)所謂

無(wú)興趣

人數(shù)

2

3

2:女生

結(jié)果

有興趣

無(wú)所謂

無(wú)興趣

人數(shù)

12

2

(1),的值;

(2)運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:請(qǐng)你填寫列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為非“有興趣”與性別有關(guān)系?

男生

女生

總計(jì)

有興趣

非有興趣

總計(jì)

(3)45人所有無(wú)興趣的學(xué)生中隨機(jī)選取2人,求所選2人中至少有一個(gè)女生的概率.

附:,.

0.10

0.05

0.01

2.706

3.841

6.635

【答案】(1),.(2)不能判定在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為無(wú)興趣與性別有關(guān)系.(3) .

【解析】

(1)由已知按比例30人選1,男生25人女生20人,;(2)由列聯(lián)表,結(jié)合,可得不能判定在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為無(wú)興趣與性別有關(guān)系;(3)利用列舉法,32從中選取2人的等可能性基本事件有10種,其中至少有一個(gè)女生有7個(gè)基本事件由古典概型概率公式可得結(jié)果.

(1)由已知按比例30人選1,男生25人女生20人,,.

(2)

男生

女生

總計(jì)

有興趣

20

12

32

非有興趣

5

8

13

總計(jì)

25

20

45

所以不能判定在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為無(wú)興趣與性別有關(guān)系.

(3)無(wú)興趣共5人3男2女,設(shè),從中選取2人的等可能性基本事件有如下10種:,,,,,,12;其中至少有一個(gè)女生有7個(gè)基本事件.

所以所選2人中至少有一個(gè)女生的概率為(或).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】水葫蘆原產(chǎn)于巴西,年作為觀賞植物引入中國(guó). 現(xiàn)在南方一些水域水葫蘆已泛濫成災(zāi)嚴(yán)重影響航道安全和水生動(dòng)物生長(zhǎng). 某科研團(tuán)隊(duì)在某水域放入一定量水葫蘆進(jìn)行研究,發(fā)現(xiàn)其蔓延速度越來(lái)越快,經(jīng)過(guò)個(gè)月其覆蓋面積為,經(jīng)過(guò)個(gè)月其覆蓋面積為. 現(xiàn)水葫蘆覆蓋面積(單位)與經(jīng)過(guò)時(shí)間個(gè)月的關(guān)系有兩個(gè)函數(shù)模型可供選擇.

(參考數(shù)據(jù):

Ⅰ)試判斷哪個(gè)函數(shù)模型更合適,并求出該模型的解析式;

Ⅱ)求原先投放的水葫蘆的面積并求約經(jīng)過(guò)幾個(gè)月該水域中水葫蘆面積是當(dāng)初投放的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工科院校對(duì)A、B兩個(gè)專業(yè)的男、女生人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),得到以下表格:

專業(yè)A

專業(yè)B

合計(jì)

女生

12

男生

46

84

合計(jì)

50

100

如果認(rèn)為工科院校中“性別”與“專業(yè)”有關(guān),那么犯錯(cuò)誤的概率不會(huì)超過(guò)( )

注:

Px2k

0.10

0.05

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879

A. 0.005B. 0.01C. 0.025D. 0.05

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在上的函數(shù),①若存在,使得成立,則函數(shù)上單調(diào)遞增。②若存在,使得成立,則函數(shù)在上不可能單調(diào)遞減. ③若存在對(duì)于任意都有成立,則函數(shù)在上遞增。④對(duì)于任意的,都有成立,則函數(shù)在上單調(diào)遞減。

則以上真命題的個(gè)數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線lxy2=0,拋物線Cy2=2pxp0.

1)若直線l過(guò)拋物線C的焦點(diǎn),求拋物線C的方程;

2)已知拋物線C上存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)PQ.

求證:線段PQ的中點(diǎn)坐標(biāo)為;

p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布Nμ,σ2).

1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求PX≥1)及X的數(shù)學(xué)期望;

2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查,試用所學(xué)知識(shí)說(shuō)明上述監(jiān)控生產(chǎn)過(guò)程方法的合理性;

附:若隨機(jī)變量Z服從正態(tài)分布Nμ,),則Pμ-3σZμ+3σ=0.9974,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線的左、右焦點(diǎn)分別為. 若點(diǎn)P在雙曲線上,且為銳角三角形,則|PF1|+|PF2|的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,.

1)若函數(shù)在定義域上為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

2)設(shè)函數(shù),,若存在使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,點(diǎn)P是側(cè)棱C1C的中點(diǎn).

1)求證:AC1∥平面PBD;

2)求證:BDA1P

查看答案和解析>>

同步練習(xí)冊(cè)答案