【題目】已知點(diǎn)P( ,1),Q(cosx,sinx),O為坐標(biāo)原點(diǎn),函數(shù)f(x)=
(Ⅰ)求函數(shù)f(x)的解析式及f(x)的最小正周期;
(Ⅱ)若A為△ABC的內(nèi)角,f(A)=4,BC=3,求△ABC周長(zhǎng)的最大值.

【答案】解:(Ⅰ)f(x)= =( ,1)( ﹣cosx ,1﹣sinx) =﹣ cosx﹣sinx+4=﹣2sin(x+ )+4,
f(x)的最小正周期T= =π;
(Ⅱ)∵f(A)=4,∴A= ,
又∵BC=3,
∴9=(b+c)2﹣bc.
∵bc≤ ,
,
∴b+c≤2 ,當(dāng)且僅當(dāng)b=c取等號(hào),
∴三角形周長(zhǎng)最大值為3+2
【解析】(Ⅰ)利用向量的數(shù)量積以及兩角和與差的三角函數(shù)化簡(jiǎn)函數(shù)的解析式,然后求解f(x)的最小正周期;(Ⅱ)利用函數(shù)的解析式求解A,然后利用余弦定理求解即可,得到bc的范圍,然后利用基本不等式求解最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)幾何體的三視圖如圖所示,已知正(主)視圖是底邊長(zhǎng)為1的平行四邊形,側(cè)(左)視圖是一個(gè)長(zhǎng)為,寬為1的矩形,俯視圖為兩個(gè)邊長(zhǎng)為1的正方形拼成的矩形.

1)求該幾何體的體積;

2)求該幾何體的表面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A、B、C的對(duì)邊依次為、.已知,,外接圓半徑,邊長(zhǎng)為整數(shù)

(1)求∠A的正弦值;

(2)求邊長(zhǎng);

(3)在AB、AC上分別有點(diǎn)D、E,線段DE將△ABC分成面積相等的兩部分,求線段DE長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足: ,且它的前n項(xiàng)和Sn有最大值,則當(dāng)Sn取到最小正值時(shí),n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x
(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

部分圖像如圖所示.

(Ⅰ)求函數(shù)的解析式及圖像的對(duì)稱軸方程;

(Ⅱ)把函數(shù)圖像上點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的倍(縱坐標(biāo)不變),再向左平移

個(gè)單位,得到函數(shù)的圖象,求關(guān)于的方程

時(shí)所有的實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校大一新生中,來自東部地區(qū)的學(xué)生有2400人、中部地區(qū)學(xué)生有1600人、西部地區(qū)學(xué)生有1000人.從中選取100人作樣本調(diào)研飲食習(xí)慣,為保證調(diào)研結(jié)果相對(duì)準(zhǔn)確,下列判斷正確的有( )

①用分層抽樣的方法分別抽取東部地區(qū)學(xué)生48人、中部地區(qū)學(xué)生32人、西部地區(qū)學(xué)生20人;

②用簡(jiǎn)單隨機(jī)抽樣的方法從新生中選出100人;

③西部地區(qū)學(xué)生小劉被選中的概率為;

④中部地區(qū)學(xué)生小張被選中的概率為

A. ①④ B. ①③ C. ②④ D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2分別是長(zhǎng)軸長(zhǎng)為2 的橢圓C: + =1(a>b>0)的左右焦點(diǎn),A1 , A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1 , A2的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為﹣
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是(﹣ ,0),求線段AB長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x-1x2-2,試?yán)没境醯群瘮?shù)的圖象,判斷f(x)有幾個(gè)零點(diǎn),并利用零點(diǎn)存在性定理確定各零點(diǎn)所在的區(qū)間(各區(qū)間長(zhǎng)度不超過1).

查看答案和解析>>

同步練習(xí)冊(cè)答案