【題目】已知橢圓經(jīng)過點(diǎn),離心率為,點(diǎn)坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的左焦點(diǎn)任作一條不垂直于坐標(biāo)軸的直線,交橢圓于兩點(diǎn),記弦的中點(diǎn)為,過作的垂線交直線于點(diǎn),證明:點(diǎn)在一條定直線上.
【答案】(1) ;(2) .
【解析】試題分析:(1)根據(jù)已知列式,可求解.
(2) 聯(lián)立與得中點(diǎn)坐標(biāo),求得直線,再聯(lián)立方程組,可得,所以點(diǎn)在定直線上.
試題解析:(1)因?yàn)?/span>,所以,從而,橢圓的方程為.
(2)設(shè),聯(lián)立與,可得,所以,設(shè),則,所以,直線,聯(lián)立方程組,解得,所以點(diǎn)在定直線上.
點(diǎn)睛:定點(diǎn)、定值問題通常是通過設(shè)參數(shù)或取特殊值來確定“定點(diǎn)”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒定的. 定點(diǎn)、定值問題同證明問題類似,在求定點(diǎn)、定值之前已知該值的結(jié)果,因此求解時(shí)應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點(diǎn)、定值顯現(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若函數(shù), 是函數(shù)的兩個(gè)零點(diǎn), 是函數(shù)的導(dǎo)函數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)無零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),動(dòng)點(diǎn)P 滿足:|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線,求此曲線的方程;
(2)若點(diǎn)Q在直線l1: x+y+3=0上,直線l2經(jīng)過點(diǎn)Q且與曲線只有一個(gè)公共點(diǎn)M,求|QM|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大小;
(2)若sinB+sinC=1,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓+=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,一條直線經(jīng)過點(diǎn)F1與橢圓交于A,B兩點(diǎn).
(1)求△ABF2的周長;
(2)若的傾斜角為,求弦長|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域均為,且是奇函數(shù),是偶函數(shù),,其中為自然對(duì)數(shù)的底數(shù).
(1)求的解析式,并證明:當(dāng)時(shí),;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0,0≤≤π)為偶函數(shù),其圖象上相鄰的兩個(gè)最高點(diǎn)之間的距離為2π.
(1)求f(x)的解析式;
(2)若 ,求 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com