【題目】已知下列命題:
①在線性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;
②兩個變量相關(guān)性越強,則相關(guān)系數(shù)r就越接近于1;
③在回歸直線方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量平均減少0.5個單位;
④兩個模型中殘差平方和越小的模型擬合的效果越好.
⑤回歸直線恒過樣本點的中心,且至少過一個樣本點;
⑥若的觀測值滿足≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺;
⑦從統(tǒng)計量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤. 其中正確命題的序號是__________.
【答案】①③④⑦
【解析】分析:根據(jù)線性回歸分析的概念進(jìn)行分析即可.
詳解:在線性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好,①正確;兩個變量相關(guān)性越強,則相關(guān)系數(shù)r的絕對值就越接近于1,②錯誤;③正確;兩個模型中殘差平方和越小的模型擬合的效果越好,④正確;回歸直線恒過樣本點的中心,這一定過樣本點,⑤錯誤;若的觀測值滿足≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,并不能說在100個吸煙的人中必有99人患有肺病,⑥錯誤;從統(tǒng)計量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤,⑦正確.
故答案為①③④⑦.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .
(1)求直線和曲線的普通方程;
(2)已知點,且直線和曲線交于兩點,求 的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中直線與拋物線C:交于A,B兩點,且.
求C的方程;
若D為直線外一點,且的外心M在C上,求M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓,如圖所示,斜率為且不過原點的直線交橢圓于兩點,線段的中點為,射線交橢圓于點,交直線于點.
(1)求的最小值;
(2)若,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中為常數(shù)且.新定義:若滿足,但,則稱為的回旋點.
(1)當(dāng)時,分別求和的值;
(2)當(dāng)時,求函數(shù)的解析式,并求出回旋點;
(3)證明函數(shù)在有且僅有兩個回旋點,并求出回旋點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( )
①在回歸分析中,可以借助散點圖判斷兩個變量是否呈線性相關(guān)關(guān)系.
②在回歸分析中,可以通過殘差圖發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),殘差平方和越小,模型的擬合效果越好.
③在回歸分析模型中,相關(guān)系數(shù)的絕對值越大,說明模型的擬合效果越好.
④在回歸直線方程中,當(dāng)解釋變量每增加1個單位時,預(yù)報變量增加0.1個單位.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱中,底面為等腰梯形,,,,,分別是的中點.
(1)證明:直線平面;
(2)求直線與面所成角的大。
(3)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校組織甲、乙、丙、丁、戊、己等6名學(xué)生參加演講比賽,采用抽簽法決定演講順序,在“學(xué)生甲和乙都不是第一個出場,且甲不是最后一個出場”的前提下,學(xué)生丙第一個出場的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線過點.
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線與雙曲線C交于A,B兩點,試問:k為何值時,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com