【題目】一個(gè)圓錐的體積為,當(dāng)這個(gè)圓錐的側(cè)面積最小時(shí),其母線與底面所成角的正切值為( )

A. B. C. D.

【答案】D

【解析】

首先設(shè)圓錐的底面半徑為,高為,從而求得圓錐的母線長(zhǎng)為,利用圓錐的體積公式以及題中的條件,得到,將圓錐的側(cè)面積表示出來(lái),之后設(shè),利用導(dǎo)數(shù)求得當(dāng),取得最小值,從而求得圓錐的側(cè)面積取得最小值時(shí),此時(shí),進(jìn)而求得圓錐的母線與底面所成角的正切值為,從而求得結(jié)果.

設(shè)圓錐的底面半徑為,高為,

所以圓錐的母線長(zhǎng)為,

所以圓錐的體積為,

所以,

因?yàn)閳A錐的側(cè)面積

設(shè),

所以,

所以當(dāng)時(shí),,,

此時(shí)單調(diào)遞增,

當(dāng)時(shí),,,

此時(shí)單調(diào)遞減,

所以當(dāng),取得最小值,

即圓錐的側(cè)面積取得最小值,

所以

所以圓錐的母線與底面所成角的正切值為,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)上且其橫坐標(biāo)為1,以為圓心、為半徑的圓與的準(zhǔn)線相切.

(1)求的值;

(2)過點(diǎn)的直線交于,兩點(diǎn),以、為鄰邊作平行四邊形,若點(diǎn)關(guān)于的對(duì)稱點(diǎn)在上,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點(diǎn).

(1)求證:平面BEF⊥平面MAD;

(2)若,求三棱錐E-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】能夠使得命題“曲線上存在四個(gè)點(diǎn)滿足四邊形是正方形”為真命題的一個(gè)實(shí)數(shù)的值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從拋物線上任意一點(diǎn)Px軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿足

(1)求點(diǎn)M的軌跡C的方程;

(2)設(shè)直線與軌跡c交于兩點(diǎn),TC上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過x軸上的定點(diǎn)?若過定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,且.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.若直線ab與平面所成角都是30°,則這兩條直線平行

B.若直線a與平面、平面所成角相等,則

C.若平面內(nèi)不共線三點(diǎn)到平面的距離相等,則

D.已知二面角的平面角為120°Pl上一定點(diǎn),則一定存在過點(diǎn)P的平面,使,所成銳二面角都為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),把函數(shù)的圖象向右平移個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半,縱坐標(biāo)不變,得到函數(shù)的圖象,當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案