如圖5,弧AEC是半徑為的半圓,為直徑,點(diǎn)為弧  
AC的中點(diǎn),點(diǎn)和點(diǎn)為線段的三等分點(diǎn),平面外一點(diǎn)滿足==,F(xiàn)E=.

(1)證明:;

 (2)已知點(diǎn)為線段上的點(diǎn),
,求平面與平面所成的兩面角的正弦值.  

                                

(2)設(shè)平面與平面RQD的交線為.

由BQ=FE,FR=FB知, .

平面,∴平面,    

而平面平面= ,

.

由(1)知,平面,∴平面,

平面平面,

,∴是平面與平面所成二面角的平面角.

中,,

,

解法二:利用向量,請同學(xué)們自行完成.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,弧AEC是半徑為a的半圓,AC為直徑,點(diǎn)E為弧AC的中點(diǎn),點(diǎn)B和點(diǎn)C為線段AD的三等分點(diǎn),平面AEC外一點(diǎn)F滿足FC⊥平面BED,F(xiàn)B=
5
a.
(1)證明:EB⊥FD;
(2)求點(diǎn)B到平面FED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,弧AEC是半徑為a的半圓,AC為直徑,點(diǎn)E為弧AC的中點(diǎn),點(diǎn)B和點(diǎn)C為線段AD的三等分點(diǎn),平面AEC外一點(diǎn)F滿足FC⊥平面BDE,F(xiàn)B=
5
a

(1)證明:平面BEF⊥平面BDF;
(2)求二面角F-DE-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)三模)如圖,弧AEC是半徑為r的半圓,AC為直徑,點(diǎn)E為弧AC的中點(diǎn),點(diǎn)B和點(diǎn)C為線段AD的三等分點(diǎn),線段ED與弧EC交于點(diǎn)G,且EG=
23
GD,平面AEC外一點(diǎn)F滿足FC⊥平面BED,F(xiàn)C=2r.
(1)證明:EB⊥FD;
(2)將△FCG(及其內(nèi)部)繞FC所在直線旋轉(zhuǎn)一周形成一幾何體,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)三模)如圖,弧AEC是半徑為r的半圓,AC為直徑,點(diǎn)E為弧AC的中點(diǎn),點(diǎn)B和點(diǎn)C為線段AD的三等分點(diǎn),線段ED 與弧EC交于點(diǎn)G,且cos∠CBG=
45
,平面AEC外一點(diǎn)F滿足FC⊥平面BED,F(xiàn)C=2r.
(1)求異面直線ED與FC所成角的大;
(2)將△FCG(及其內(nèi)部)繞FC所在直線旋轉(zhuǎn)一周形成一幾何體,求該幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案