精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}中, ,若利用下面程序框圖計算該數列的第2016項,則判斷框內的條件是(

A.n≤2014
B.n≤2016
C.n≤2015
D.n≤2017

【答案】B
【解析】解:通過分析,本程序框圖為“當型“循環(huán)結構,
判斷框內為滿足循環(huán)的條件,
第1次循環(huán),A= ,n=1+1=2,
第2次循環(huán),A= = ,n=2+1=3,

當執(zhí)行第2016項時,n=2017,由題意,此時,應該不滿足條件,退出循環(huán),輸出A的值.
所以,判斷框內的條件應為:n≤2016.
故選:B.
【考點精析】關于本題考查的程序框圖,需要了解程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(1)已知圓的圓心是直線軸的交點,且與直線相切,求圓的標準方程;

(2)已知圓,直線過點與圓相交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知圓的圓心在直線上,且過點,與直線相切.

)求圓的方程

)設直線與圓相交于兩點.求實數的取值范圍.

的條件下,是否存在實數,使得弦的垂直平分線過點,若存在,求出實數的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓及直線,直線被圓截得的弦長為

)求實數的值.

)求過點并與圓相切的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法:①殘差可用來判斷模型擬合的效果;

②設有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;

③線性回歸方程必過 ;

④在一個2×2列聯表中,由計算得=13.079,則有99%的把握確認這兩個變量間有關系(其中);

其中錯誤的個數是(

A. 0 B. 1 C. 2 D. 3.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定點M(1,0)和直線x=﹣1上的動點N(﹣1,t),線段MN的垂直平分線交直線y=t于點R,設點R的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+b(k≠0)交x軸于點C,交曲線E于不同的兩點A,B,點B關于x軸的對稱點為點P.點C關于y軸的對稱點為Q,求證:A,P,Q三點共線.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在下列命題中:
①存在一個平面與正方體的12條棱所成的角都相等;
②存在一個平面與正方體的6個面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個面所成的角都相等.
其中真命題的個數為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大學藝術專業(yè)400名學生參加某次測評,根據男女學生人數比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數,將數據分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數小于70的概率;

(Ⅱ)已知樣本中分數小于40的學生有5人,試估計總體中分數在區(qū)間[40,50)內的人數;

(Ⅲ)已知樣本中有一半男生的分數不小于70,且樣本中分數不小于70的男女生人數相等.試估計總體中男生和女生人數的比例.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角坐標中,設橢圓的左右兩個焦點分別為,,過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.

(1)求橢圓的方程;

(2)已知經過點且斜率為,直線與橢圓有兩個不同的交點,請問是否存在常數,使得向量共線?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案