有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線α”的結(jié)論顯然是錯誤的,這是因為
 

①大前提錯誤    
②小前提錯誤      
③推理形式錯誤       
④非以上錯誤.
考點:演繹推理的意義
專題:規(guī)律型
分析:本題考查的知識點是演繹推理的基本方法及空間中線面關(guān)系,在使用三段論推理證明中,如果命題是錯誤的,則可能是“大前提”錯誤,也可能是“小前提”錯誤,也可能是邏輯錯誤,我們分析:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b?平面α,直線a?平面α,直線b∥平面α,則直線b∥直線a”的推理過程,不難得到結(jié)論.
解答:解:直線平行于平面,則直線可與平面內(nèi)的直線平行、異面、異面垂直.
故大前提錯誤.
故答案為:①
點評:演繹推理的主要形式就是由大前提、小前提推出結(jié)論的三段論推理.三段論推理的依據(jù)用集合論的觀點來講就是:若集合M的所有元素都具有性質(zhì)P,S是M的子集,那么S中所有元素都具有性質(zhì)P.三段論的公式中包含三個判斷:第一個判斷稱為大前提,它提供了一個一般的原理;第二個判斷叫小前提,它指出了一個特殊情況;這兩個判斷聯(lián)合起來,揭示了一般原理和特殊情況的內(nèi)在聯(lián)系,從而產(chǎn)生了第三個判斷結(jié)論.演繹推理是一種必然性推理,演繹推理的前提與結(jié)論之間有蘊(yùn)涵關(guān)系.因而,只要前提是真實的,推理的形式是正確的,那么結(jié)論必定是真實的,但錯誤的前提可能導(dǎo)致錯誤的結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,則“ab≠0”是“a≠0”的(  )
A、充分而不必要條件B、必要而不充分條件C、充要條件D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax3+bx2取得極大值和極小值時的x的值分別為0和
1
3
,則( 。
A、a-2b=0
B、2a-b=0
C、2a+b=0
D、a+2b=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了判斷高中三年級學(xué)生是否選修文科與性別的關(guān)系,現(xiàn)隨機(jī)抽取50名學(xué)生,得到如下2×2列聯(lián)表:
理科 文科
13 10
7 20
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根據(jù)表中數(shù)據(jù),得到k=
50×(13×20-10×7)2
23×27×20×30
≈4.844.則認(rèn)為選修文科與性別有關(guān)系出錯的可能性為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面使用的類比推理中恰當(dāng)?shù)氖牵ā 。?/div>
A、“若m•2=n•2,則m=n”類比得出“若m•0=n•0,則m=n”
B、“(a+b)c=ac+bc”類比得出“(a•b)c=ac•bc”
C、“(a+b)c=ac+bc”類比得出“
a+b
c
=
a
c
+
b
c
(c≠0)”
D、“(pq)n=pn•qn”類比得出“(p+q)n=pn+qn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則復(fù)數(shù)z=i(2-i)2所對應(yīng)的點落在(  )
A、第一象限B、第二象限C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
3-i
i
(i為虛數(shù)單位),則|z|等于( 。
A、10
B、
10
C、5
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將甲、乙在內(nèi)的7名工人分成3個小組,一組3人,另兩組每組各2人,則甲乙不分在同一組的分法有( 。
A、80B、170C、185D、65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直角坐標(biāo)系xoy中,點(2,-2)在矩陣M=
0   1
a   0
對應(yīng)變換作用下得到點(-2,4),曲線C:x2+y2=1在矩陣M對應(yīng)變換作用下得到曲線C′,
(1)求曲線C′的方程.
(2)求矩陣M的特征值和特征向量.

查看答案和解析>>

同步練習(xí)冊答案