如圖,已知橢圓C:+y2=1(a>1)的上頂點(diǎn)為A,離心率為,若不過點(diǎn)A的動(dòng)直線l與橢圓C相交于P,Q兩點(diǎn),且·=0.

(1)求橢圓C的方程.
(2)求證:直線l過定點(diǎn),并求出該定點(diǎn)N的坐標(biāo).

(1) +y2=1   (2)見解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,直線是直線上的線段,且是橢圓上一點(diǎn),求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)在橢圓:上,以為圓心的圓與軸相切于橢圓的右焦點(diǎn),且,其中為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)已知點(diǎn),設(shè)是橢圓上的一點(diǎn),過、兩點(diǎn)的直線軸于點(diǎn),若, 求直線的方程;
(3)作直線與橢圓:交于不同的兩點(diǎn),,其中點(diǎn)的坐標(biāo)為,若點(diǎn)是線段垂直平分線上一點(diǎn),且滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在直角坐標(biāo)系xOy中,點(diǎn)P到拋物線C:y2=2px(p>0)的準(zhǔn)線的距離為.點(diǎn)M(t,1)是C上的定點(diǎn),A,B是C上的兩動(dòng)點(diǎn),且線段AB被直線OM平分.

(1)求p,t的值;
(2)求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上且過點(diǎn)P,離心率是.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l過點(diǎn)E (-1,0)且與橢圓C交于A,B兩點(diǎn),若|EA|=2|EB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A.

(1)求實(shí)數(shù)b的值.
(2)求以點(diǎn)A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

P(x0,y0)(x0≠±a)是雙曲線E:-=1(a>0,b>0)上一點(diǎn),M,N分別是雙曲線E的左,右頂點(diǎn),直線PM,PN的斜率之積為.
(1)求雙曲線的離心率.
(2)過雙曲線E的右焦點(diǎn)且斜率為1的直線交雙曲線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),C為雙曲線上一點(diǎn),滿足+,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓C:=1(a>b>0)過點(diǎn)(0,4),離心率為.
(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案