精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中,平面平面,是邊長為的等邊三角形,,,,點的中點.

1)求證:平面;

2)求證:;

3)求二面角的余弦值.

【答案】1)見解析;(2)見解析;(3

【解析】

1)取中點,連結,,可證明出,,得到為平行四邊形,通過,證明出平面;

2)取中點,連結,,由平面平面,得到平面,從而以為原點,建立空間直角坐標系,得到,的坐標,然后通過,證明;

(3)證明出是平面的法向量,求出平面的法向量,通過法向量的夾角公式,得到二面角的余弦值.

1)證明:取中點,連結,

在等邊三角形中,,

又因為,

所以,又因為,

所以,

所以為平行四邊形,

所以,

又因為平面,平面,

所以平面;

2)證明:取中點,連結,,

因為三角形是等邊三角形

所以,

因為四邊形滿足,,,

所以,

又因為平面平面,平面平面,

平面,

所以平面

,,所在直線為,,軸,建立空間直角坐標系,

,,,

所以,

所以

所以

3)由(2)知,

因為等邊三角形中,的中點,所以

平面,

所以平面

所以是平面的法向量,

,

設平面的法向量為

,即,

,得,

,

又因為二面角為銳二面角,

所以二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,

1)當時,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A的長度均大于200米,現在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.

1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?

2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價均為每平方米100.若圍圍墻用了20000元,問如何圍可使竹籬笆用料最省?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓與圓 相切,且與圓 相內切,記圓心的軌跡為曲線.設為曲線上的一個不在軸上的動點, 為坐標原點,過點的平行線交曲線, 兩個不同的點.

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個常數?若能,求出這個常數,若不能,請說明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】第七屆世界軍人運動會于20191018日至20191027日在中國武漢舉行,第七屆世界軍人運動會是我國第一次承辦的綜合性國際軍事體育賽事,也是繼北京奧運會后我國舉辦的規(guī)模最大的國際體育盛會.經過激烈角逐,獎牌榜的前6名依次為中國俄羅斯巴西法國波蘭和德國.其中德國隊共有45名運動員獲得了獎牌,其中金牌10枚銀牌15枚銅牌20枚,某大學德語系同學利用分層抽樣的方式從德國隊獲獎選手中抽取9名獲獎代表.

1)請問這9名獲獎代表中獲金牌銀牌銅牌的人數分別為多少人?

2)從這9人中隨機抽取3人,記這3人中銀牌選手的人數為,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據此,某網站調查了人們對生態(tài)文明建設的關注情況,調查數據表明,參與調查的人員中關注生態(tài)文明建設的約占80%.現從參與調查的關注生態(tài)文明建設的人員中隨機選出200人,并將這200人按年齡(單位:歲)分組:第1[1525),第2[25,35),第3[3545),第4[45,55),第5[55,65],得到的頻率分布直方圖如圖所示.

(Ⅰ)求這200人的平均年齡(每一組用該組區(qū)間的中點值作為代表)和年齡的中位數(保留一位小數);

(Ⅱ)現在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調查,求抽取的3人中恰有2人的年齡在第2組中的概率;

(Ⅲ)若從所有參與調查的人(人數很多)中任意選出3人,設這3人中關注生態(tài)文明建設的人數為X,求隨機變量X的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點.

(1)若,則在線段上是否存在點,使得平面?若存在,請確定點的位置;若不存在,請說明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數方程為(為參數),直線l與曲線C交于M、N兩點。

(1)寫出直線l的普通方程和曲線C的直角坐標方程:

(2)若成等比數列,求a的值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某人經營一個抽獎游戲,顧客花費3元錢可購買一次游戲機會,每次游戲中,顧客從標有黑1、黑2、黑3、黑4、紅1、紅3的6張卡片中隨機抽取2張,并根據摸出的卡片的情況進行兌獎,經營者將顧客抽到的卡片情況分成以下類別::同花順,即卡片顏色相同且號碼相鄰;:同花,即卡片顏色相同,但號碼不相鄰;:順子,即卡片號碼相鄰,但顏色不同;:對子,即兩張卡片號碼相同;:其它,即,,以外的所有可能情況,若經營者打算將以上五種類別中最不容易發(fā)生的一種類別對應顧客中一等獎,最容易發(fā)生的一種類別對應顧客中二等獎,其他類別對應顧客中三等獎.

(1)一、二等獎分別對應哪一種類別?(寫出字母即可)

(2)若經營者規(guī)定:中一、二、三等獎,分別可獲得價值9元、3元、1元的獎品,假設某天參與游戲的顧客為300人次,試估計經營者這一天的盈利.

查看答案和解析>>

同步練習冊答案