定義:F(x,y)=yx(x>0,y>0),設(shè)數(shù)列{an}滿(mǎn)足an=
F(n,1)
F(2,n)
,若Sn為數(shù)列{
anan+1
}的前n項(xiàng)和,則下列說(shuō)法正確的是( 。
分析:利用已知即可得出an,進(jìn)而得到
anan+1
,再利用裂項(xiàng)求和即可得出前n項(xiàng)和Sn
解答:解:∵數(shù)列{an}滿(mǎn)足an=
F(n,1)
F(2,n)
,∴an=
1n
n2
=
1
n2

anan+1
=
1
n2
1
(n+1)2
=
1
n(n+1)
=
1
n
-
1
n+1

Sn=(1-
1
2
)+(
1
2
-
1
3
)+
…+(
1
n
-
1
n+1
)

=1-
1
n+1
<1.
即Sn<1.
故選C.
點(diǎn)評(píng):熟練掌握裂項(xiàng)求和是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:F(x,y)=yx(x>0,y>0)
(1)解關(guān)于x的不等式F(1,x2)+F(2,x)≤3x-1;
(2)記f(x)=3•F(1,x),設(shè)Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n
n
)
,若不等式
an
Sn
an+1
Sn+1
對(duì)n∈N*恒成立,求實(shí)數(shù)a的取值范圍;
(3)記g(x)=F(x,2),正項(xiàng)數(shù)列an滿(mǎn)足:a1=3,g(an+1)=8an,求數(shù)列an的通項(xiàng)公式,并求所有可能的乘積ai•aj(1≤i≤j≤n)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•東城區(qū)二模)定義:F(x,y)=yx(x>0,y>0),已知數(shù)列{an}滿(mǎn)足:An=
F(n,2)
F(2,n)
(n∈N+),若對(duì)任意正整數(shù)n,都有an≥ak(k∈N*成立,則ak的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:F(x,y)=yx(x>0,y>0),已知數(shù)列{an}滿(mǎn)足:an=
F(n,2)
F(2,n)
(n∈N*),若對(duì)任意正整數(shù)n,都有an≤ak(k∈N*)成立,則ak的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義函數(shù)F(x,y)=(1+x)y,x,y∈(0,+∞).
(1)令函數(shù)f(x)=F[1,log2(x3-3x)]的圖象為曲線(xiàn)C1求與直線(xiàn)4x+15y-3=0垂直的曲線(xiàn)C1的切線(xiàn)方程;
(2)令函數(shù)g(x)=F[1,log2(x3+ax2+bx+1)]的圖象為曲線(xiàn)C2,若存在實(shí)數(shù)b使得曲線(xiàn)C2在x0(x0∈(1,4))處有斜率為-8的切線(xiàn),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x,y∈N*,且x<y時(shí),證明F(x,y)>F(y,x).

查看答案和解析>>

同步練習(xí)冊(cè)答案