如圖所示,四棱錐S-ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中不正確的是(  ).
A.AC⊥SB
B.AB∥平面SCD
C.SA與平面SBD所成的角等于SC與平面SBD所成的角
D.AB與SC所成的角等于DC與SA所成的角
D
易證AC⊥平面SBD,因而AC⊥SB,A正確;AB∥DC,DC?平面SCD,故AB∥平面SCD,B正確;由于SA,SC與平面SBD的相對(duì)位置一樣,因而所成的角相同.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△CDF分別沿DE,DF折起,使A,C兩點(diǎn)重合于A(yíng)′.

(1)求證:A′D⊥EF;
(2)求二面角A′-EF-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)四棱錐P一ABCD的正視圖是邊長(zhǎng)為2的正方形及其一條對(duì)角線(xiàn),側(cè)視圖和俯視圖全全等的等腰直角三角形,直角邊長(zhǎng)為2,直觀(guān)圖如圖.
(1)求四棱錐P一ABCD的體積:
(2)求二面角C-PB-A大。
(3)M為棱PB上的點(diǎn),當(dāng)PM長(zhǎng)為何值時(shí),CM⊥PA?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知矩形ABCD中,AB=2,AD=5,E,F(xiàn)分別在A(yíng)D,BC上且AE=1,BF=3,將四邊形AEFB沿EF折起,使點(diǎn)B在平面CDEF上的射影H在直線(xiàn)DE上.

(1)求證:AD平面BFC;
(2)求二面角A-DE-F的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方體ABCD-A1B1C1D1中,點(diǎn)P是直線(xiàn)BC1的動(dòng)點(diǎn),則下列四個(gè)命題:
①三棱錐A-D1PC的體積不變;
②直線(xiàn)AP與平面ACD1所成角的大小不變;
③二面角P-AD1-C的大小不變:
其中正確的命題有____      .(把所有正確命題的編號(hào)填在橫線(xiàn)上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將邊長(zhǎng)為的正方形沿對(duì)角線(xiàn)折起,使得平面平面,   
在折起后形成的三棱錐中,給出下列三個(gè)命題:
①面是等邊三角形; ②; 
③三棱錐的體積是.
其中正確命題的序號(hào)是_          .(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,,為三條不同的直線(xiàn),為兩個(gè)不同的平面,下列命題中正確的是(    )
A.,且,則.
B.若平面內(nèi)有不共線(xiàn)的三點(diǎn)到平面的距離相等,則.
C.若,,則.
D.若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結(jié)論正確的是(  )
A.PB⊥AD
B.平面PAB⊥平面PBC
C.直線(xiàn)BC∥平面PAE
D.直線(xiàn)PD與平面ABC所成的角為45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知m,n表示兩條不同直線(xiàn),表示平面,下列說(shuō)法正確的是(   )
A.若B.若,,則
C.若,,則D.若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案