分析 利用輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,根據(jù)當(dāng)x=θ時f(x)取得最大值,建立關(guān)系.利用和與差公式或者誘導(dǎo)公式即可得解.
解答 解:函數(shù)f(x)=2sinx-cosx
化簡可得:$f(x)=\sqrt{5}({sinx•\frac{2}{{\sqrt{5}}}-cosx•\frac{1}{{\sqrt{5}}}})=\sqrt{5}sin({x-{θ_0}})$,
(其中$cos{θ_0}=\frac{2}{{\sqrt{5}}},sin{θ_0}=\frac{1}{{\sqrt{5}}},{θ_0}$是銳角),
由題意:sin(x-θ0)=1.
法一:sinθ=sin[(θ-θ0)+θ0]=sin(θ-θ0)cosθ0+cos(θ-θ0)sinθ0=$1×\frac{2}{{\sqrt{5}}}+0×\frac{1}{{\sqrt{5}}}=\frac{{2\sqrt{5}}}{5}$.
法二:∵sin(x-θ0)=1.
∴$θ-{θ_0}=\frac{π}{2}+2kπ,k∈Z$,$sinθ=sin({{θ_0}+\frac{π}{2}+2kπ})=cos{θ_0}$=$\frac{{2\sqrt{5}}}{5}$.
故答案為:$\frac{2\sqrt{5}}{5}$.
點(diǎn)評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{6}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 80 | B. | 81 | C. | 82 | D. | 83 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com